Что относится к источникам зажигания пылевоздушных газовоздушных
Перейти к содержимому

Что относится к источникам зажигания пылевоздушных газовоздушных

  • автор:

Источники зажигания и горючая среда

Пожар относится к крайне неприятным событиям, которые могут повлечь за собой не только порчу вещей, но и смерть человека. Однако для возникновения возгорания необходимо, чтобы были соблюдены некоторые определенные условия. Главными составляющими являются горючая среда и воздействующие на нее источники зажигания.

В данной статье мы постараемся дать определение этим понятиям, рассмотреть их виды, а также расскажем, как можно предотвратить возгорание путем исключения условий образования горючей среды.

Определение и виды источников зажигания

Началом любого воспламенения можно назвать момент воздействия источника на любое горючее вещество.

Источник зажигания это средство, обладающее достаточным объемом энергии, температурой, которое при длительном воздействии на внешнюю среду способно вызвать воспламенение(горение).

Для того чтобы более точно понять определение, нужно рассмотреть источники зажигания и их классификацию. В основе их разделения лежит тот или иной вид энергии, поэтому источники бывают: электрические, химические, термические и механические.

Если в качестве примера взять обычную квартиру, то условно виды источников зажигания обозначим так:

На эту тему ▼
Пожар в квартире
Возможные причины и что делать

  • Тепло от электрических обогревателей или водонагревателей
  • Искры, возникающие в процессе сварочных работ, например при ремонте труб
  • Открытый огонь (не потушенная папироса, горящая свеча, камин, зажженная спичка, рабочая конфорка газовой плиты)
  • Самовозгорающиеся материалы, а так же вещества. Это горючие ископаемые, вещества химические, некоторые растительные продукты (масла, жиры).
  • Нарушения в работе различных электрических аппаратов и/или приборов (перегрузка, неисправность)

Перечисленные виды это возможные источники зажигания, которые вполне могут привести к пожару Вашей квартире, воздействуя высокой температурой на горючую среду. Дальше рассмотрим, что в нее входит и как она образуется.

Условия образования и виды горючей среды

Горючая среда – это все то, что может воспламениться при воздействии источника зажигания, другими словами, она может представлять собой любую внешнюю среду, воспламеняющуюся при соприкосновении с тем или иным источником зажигания, при этом обладает способностью самостоятельного горения даже после ликвидации этого источника.

Если описать проще, то это все, что есть в помещении, включая, воздух, в котором содержится кислород, являющейся необходимым элементом для начала возгорания. В науке данную среду назвали «пожарной нагрузкой». Усредненной величиной является 50 кг такой среды на 1 м квартиры.

В зависимости от того, что в нее входит, она с разной силой может быть подвержена возгоранию. Существуют 3 класса веществ и материалов: негорючие, трудногорючие и горючие. Следует заметить, что каждое горючее вещество имеет индивидуальную температуру возгорания. Температура в 300 о С является максимальной для большинства твердых материалов.

Чтобы узнать, к какому классу пожарной опасности относится то или иное оборудование или вещество необходимо заглянуть в сопроводительный документ.

Пожар в квартире

Пожар в квартире

Что относится к горючей среде

  1. Предметы интерьера и быта (одежда, книги, посуда), а также любое оборудование, имеющее в своем составе горючие материалы.
  2. Пыль, горючие газы (ацетилен, водород, метан, пропан), которые применяются в производствах.
  3. Отделочные и строительные материалы, облицовка, а также кабели, воздуховоды.

Предсказать поведение горючей среды в случае пожара крайне проблематично. В первые минуты обычно пламя устремляется к потолку. По мере того, как температура в помещении повышается, начинают воспламеняться горючие материалы, попадающие под ее действие. Происходит это в хаотичном порядке.

Рассмотрим рекомендуемые способы предотвращения образования горючей среды:

На эту тему ▼
Способы тушения пожаров
Основные приемы

  1. Количество горючего вещества должно быть ограничено.
  2. Потенциальные источники зажигания следует отгородить от горючей среды с помощью использования изолированных отсеков.
  3. Нужно осуществлять контроль над концентрацией окислителя в среде, по возможности сделать ее минимальной.
  4. Поддерживать в помещении такую температуру, при которой риск возгорания будет минимальным.
  5. Оборудование, имеющее высокий класс пожарной опасности следует располагать на открытых территориях.
  6. Использование негорючих илии трудногорючих веществ (материалов).

Профилактические мероприятия по предотвращению пожара

Самым непредсказуемым источником зажигания принято считать открытый огонь. Для того чтобы снизить его опасность, необходимо придерживаться здравого смысла и определенных правил пожарной безопасности.

Касаемо курения в тамбурах или жилых помещениях, то для пепла должна быть пепельница, изготовленная из толстого стекла или негорючего пластика. Когда уходите из дома закрывайте окна, т.к. не потушенная сигарета, выброшенная из соседнего балкона, часто становится причиной возникновения пожара, ведь по статистике на балконе хранится много вещей, которые и образуют “пожарную нагрузку”.

На эту тему ▼
Задачи пожарной профилактики

К газовым плитам обязательно должны прилагаться сертификаты качества. Если обнаружена неисправность, то необходимо прекратить пользоваться плитой и вызвать мастера. Между плитой и легкосгораемыми предметами, включая строительные конструкции должно выдерживаться расстояние более 20 см. В деревянном доме стены необходимо изолировать от источника зажигания штукатуркой или стальным листом, или обработать огнезащитными составами.

Устанавливать газовые приборы имеет право только специалист. По окончании работы он оформляет акт о пуске прибора в эксплуатацию и выдает гарантию на дальнейшее обслуживание.

Водонагреватели не прикрепляются на неизолированные стены. Печи, камины и дымоходы следует очищать от отходов горения перед каждым отопительным сезоном.

Производственные источники зажигания

Источник зажигания — средство энергетического воздействия, инициирующее возникновение горения данной среды.

Под производственными источниками зажигания следует понимать такие источники, существование или появление которых связано с осуществлением технологических процессов производств.

Производственные источники зажигания характеризуются воспламеняющей способностью, которую оценивают упрощенно — путем сравнения температуры, теплосодержания и времени его теплового действия с соответствующими характеристиками горючей смеси.

При этом считают, что источник тепла опасен как источник зажигания, если:

температура искры Ти больше (или равна) температуре самовоспламенения горючей среды Тсв, в контакте с которой находится искра

количество тепла, заключенное в искре, qи больше (или равно) минимальной энергии зажигания горючей среды qмин

время действия искры tи (определяется при охлаждении искры до Тсв) больше (или равно) периода индукции горючей среды tинд:

Если хотя бы одно из названных условий не выполняется, то искра не обладает воспламеняющейся способностью и, следовательно, она не может быть отнесена к источнику зажигания.

Параметры предполагаемого источника зажигания можно определить расчетным или опытным путем, а горючей среды — по справочной литературе.

В условиях производства существует большое количество различных источников зажигания.

Вероятность возникновения источника зажигания принимают равной нулю в следующих случаях:

  • если источник не способен нагреть вещество выше 80% значения температуры самовоспламенения вещества или температуры самовозгорания вещества, имеющего склонность к тепловому самовозгоранию;
  • если энергия, переданная тепловым источником горючему веществу (паро-, газо-, пылевоздушной смеси) ниже 40% минимальной энергии зажигания;
  • если за время остывания теплового источника он не способен нагреть горючие вещества выше температуры воспламенения;
  • если время воздействия теплового источника меньше суммы периода индукции горючей среды и времени нагрева локального объема этой среды от начальной температуры до температуры воспламенения.
  • постоянно действующие (они предусмотрены технологическим регламентом при нормальном режиме работы оборудования);
  • потенциально возможные источники зажигания, возникающие при нарушениях технологического процесса.
  • открытый огонь и раскаленные продукты сгорания;
  • тепловое проявление механической энергии;
  • тепловое проявление химических реакций;
  • тепловое проявление электрической энергии.
Рис. 10. Схема гравитационного искроулови-теля: 1 — осадительная камера; 2 — смесь потока дымовых газов с искрами; 3 — направление движения дымовых газов; 4 — направление движения искр Рис. 11. Схема инерционного искроулови-теля: 1 — топка; 2 — перегородка; 3 — направление движения дымовых газов; 4 — направление движения искр; 5 — искроосадительная камера
Рис. 12. Схема центробежного искроуловителя циклонного типа: 1 — корпус искроуловителя; 2 — смесь потока дымовых газов с искрами; 3 — тангенциальный патрубок; 4 — направление движения дымовых газов; 5 — направление движения искр; 6 — выгрузка охлажденных искр

5. Ограничение источников огня, не вызванных потребностями технологического процесса: 5.1. оборудование мест для курения; 5.2. применение горячей воды, пара, для обогрева замерзших труб; 5.3. распаривание и очистка скребками отложений в аппаратах вместо их выжигания. Тепловое проявление механической энергии. При взаимном трении тел за счет совершения механической работы происходит их разогрев. При этом механическая энергия переходит в тепловую. Тепловой нагрев, т. е. температура трущихся тел в зависимости от условий трения может быть достаточной для воспламенения горючих веществ и материалов. При этом нагретые тела выступают в качестве источника зажигания. В производственных условиях наиболее распространенными случаями опасного нагрева тел при трении являются:

  • удары твердых тел с образованием искр;
  • поверхностное трение тел;
  • сжатие газов.

Удары твердых тел с образованием искр. При определенной силе удара некоторых твердых тел друг о друга могут образовываться искры, которые называют искрами удара или трения. Искры представляют собой нагретые до высокой температуры (раскаленные) частицы металла или камня (в зависимости от того, какие твердые тела участвуют в соударении) размером от 0,1 до 0,5 мм и более. Температура искр удара из обычных конструкционных сталей достигает температуры плавления металла — 1550 °С. Несмотря на высокую температуру искры ее воспламеняющая способность сравнительно невысока, т. к. из-за малых размеров (массы) запас тепловой энергии искры очень мал. Искры способны воспламенить парогазовоздушные смеси, имеющие малый период индукции, небольшую минимальную энергию зажигания. Наибольшую опасность в этой связи представляют ацетилен, водород, этилен, оксид углерода и сероуглерод. Воспламеняющая способность искры, находящейся в покое, выше летящей, так как неподвижная искра медленнее охлаждается, она отдает тепло одному и тому же объему горючей среды и, следовательно, может его нагреть до более высокой температуры. Поэтому искры, находящиеся в покое, способны воспламенить даже твердые вещества в измельченном виде (волокна, пыли). Искры в условиях производства образуются при работе с инструментом ударного действия (гаечными ключами, молотками, зубилами и т. п.), при попадании примесей металла и камней в машины с вращающимися механизмами (аппараты с мешалками, вентиляторы, газодувки и т. п.), а также при ударах подвижных механизмов машины о неподвижные (молотковые мельницы, вентиляторы, аппараты с откидными крышками, люками и т. п.). Мероприятия по предупреждению опасного проявления искр от удара и трения:

  1. Применение во взрывоопасных зонах (помещениях) применять искробезопасного инструмента.
  2. Обдув чистым воздухом места производства ремонтных и др. работ.
  3. Исключение попадания в машины металлических примесей и камней (магнитные уловители и камнеуловители).
  4. Для предупреждения искр от ударов подвижных механизмов машин о неподвижные:
    1. тщательная регулировка и балансировка валов;
    2. проверка зазоров между этими механизмами;
    3. недопущение перегрузки машин.
  5. Применять искробезопасные вентиляторы для транспортировки паро- и газовоздушных смесей, пылей и твердых горючих материалов.
  6. В помещениях получения и хранения ацетилена, этилена и т.п. полы выполнять из неискрящего материала или застилать их резиновыми ковриками.

Поверхностное трение тел. Перемещение относительно друг друга соприкасающихся тел требует затраты энергии на преодоление сил трения. Эта энергия почти целиком превращается в теплоту, которая, в свою очередь, зависит от вида трения, свойств трущихся поверхностей (их природы, степени загрязнения, шероховатости), от давления, размера поверхности и начальной температуры. При нормальных условиях выделяющееся тепло своевременно отводится, и этим обеспечивается нормальный температурный режим. Однако при определенных условиях температура трущихся поверхностей может повыситься до опасных значений, при которых они могут стать источником зажигания. Причинами роста температуры трущихся тел в общем случае является увеличение количества тепла или уменьшение теплоотвода. По этим причинам в технологических процессах производств происходят опасные перегревы подшипников, транспортных лент и приводных ремней, волокнистых горючих материалов при наматывании их на вращающиеся валы, а также твердых горючих материалов при их механической обработке. Мероприятия по предупреждению опасного проявления поверхностного трения тел:

  1. Замена подшипников скольжения на подшипники качения.
  2. Контроль за смазкой, температурой подшипников.
  3. Контроль за степенью натяжения транспортерных лент, ремней, не допущение работы машин с перегрузкой.
  4. Замена плоскоременных передач на клиноременные.
  5. Для предупреждения наматывания волокнистых материалов на вращающиеся валы используют:
    1. применение свободнонасаженных втулок, кожухов и т.п. для защиты открытых участков валов от контакта с волокнистым материалом;
    2. предотвращение перегрузки;
    3. устройство специальных ножей для срезания наматывающихся волокнистых материалов;
    4. установка минимальных зазоров между валом и подшипником.
  6. При механической обработке горючих материалов необходимо:
    1. соблюдать режим резания,
    2. своевременно затачивать инструмент,
    3. использовать локальное охлаждения места резания (эмульсии, масла, вода и т.п.).

Сжатие газов. Его широко применяют в технологических процессах транспортировки газов, при производстве этилового спирта из этилена, где Рраб= 10 МПа (100 ат), полиэтилена методом высокого давления, где Рраб = 150-200 МПа (1500—2000 ат), при получении сжатого воздуха и т. п. Сущность нагревания газов при сжатии в компрессорах заключается в том, что в результате изменения (уменьшения) первоначального объема газообразных тел затрачивается механическая энергия на преодоление межмолекулярных сил трения (на нарушение динамического равновесия между силами гравитационного и электромагнитного полей). Вследствие этого выделяется тепло, которое расходуется на нагревание сжимаемого газа и самого компрессора. Основными причинами перегрева газов и компрессоров являются:

  • нарушение материального баланса (уменьшение расхода газа в системе или увеличение подачи компрессора) ;
  • снижение интенсивности отвода тепла из зоны сжатия (уменьшение расхода или полное прекращение подачи хладоагента в холодильники, подача хладоагента с завышенной температурой, загрязнение теплообменной поверхности холодильников).

Температура газа при сжатии в компрессоре и отсутствии его охлаждения (Тк), К, вычисляют по формуле (1.36) где Тн — температура газа в начале сжатия, К; Рк, Рн — давление газа в конце и начале сжатия, кг·м -2 ; k — показатель адиабаты (равен 1,67 и 1,4 соответственно для одно- и двухатомных газов). Для многоатомных газов показатель адиабаты вычисляют по формуле: (1.37) где Ср, Сv — изобарная и изохорная удельные массовые теплоемкости газов, . Предупреждение перегрева компрессоров при сжатии газов:

  1. Разделение процесса сжатия газов на несколько ступеней, если по условиям технологии требуется 4 — 5-кратное сжатие;
  2. Устройство систем охлаждения газа на каждой ступени сжатия;
  3. Установка предохранительного клапана на нагнетательной линии за компрессором;
  4. Автоматический контроль и регулирование температуры сжимаемого газа путем изменения расхода охлаждающей жидкости, подаваемой в холодильники;
  5. Оборудование автоматической системой блокировки, обеспечивающей отключение компрессора в случае увеличения давления или температуры газа в нагнетательных линиях;
  6. Очистка теплообменной поверхности холодильников и внутренних поверхностей трубопроводов от нагаромасляных отложений.

Тепловое проявление химических реакций. Многие вещества и материалы при определенных условиях могут вступать в химическое взаимодействие с положительным тепловым эффектом реакций при контакте с воздухом, водой или друг с другом, а также могут саморазлагаться при нагревании или механических воздействиях. Выделяющегося при этом в зоне реакции тепла может быть достаточно для нагрева веществ и материалов до их самовоспламенения. Вещества, самовоспламенение которых происходит на воздухе. 1. Вещества, нагретые выше температуры самовоспламенения. Нередко по условиям технологии находящиеся в аппаратах вещества могут быть нагреты до температуры, превышающей температуру их самовоспламенения. Пример: пиролизный газ при получении этилена из нефтепродуктов имеет температуру самовоспламенения в пределах 530. 550°С, а выходит из печей пиролиза с температурой 850°С. Мазут с температурой самовоспламенения 380. 420° С на установках термического крекинга нагревается до 500° С; бутан и бутилен, имеющие температуру самовоспламенения соответственно 420 и 439°С, при получении бутадиена нагреваются до 550. 650° С и т.д. Естественно, что при появлении неплотностей в аппаратах и трубопроводах и соприкосновении с воздухом выходящего наружу продукта, нагретого выше температуры самовоспламенения, происходит его загорание. В некоторых случаях используемые в технологии вещества имеют очень низкую температуру самовоспламенения, даже ниже температуры окружающей среды. Так, триэтилалюминий имеет температуру самовоспламенения минус 68° С, диэтилалюминийхлорид — минус 60° С, триизобутилалюминий — минус 40° С, фосфористый водород, жидкий и белый фосфор имеют температуру самовоспламенения ниже комнатной температуры. Загорания подобных веществ можно избежать только путем обеспечения хорошей герметичности аппаратов с исключением взаимоконтакта этих веществ с воздухом или использованием их в растворе. 2. Вещества, самовозгорающиеся на воздухе. Многие вещества, соприкасаясь с воздухом, способны к самовозгоранию. Самовозгорание начинается при температуре окружающей среды или после некоторого предварительного (иногда незначительного) их подогрева. К таким веществам следует отнести:

  • растительные масла и животные жиры,
  • каменный и древесный уголь,
  • сернистые соединения железа,
  • некоторые сорта сажи,
  • порошкообразные вещества (алюминий, цинк, титан, магний, торф, отходы нитроглифталевых лаков),
  • олифу, скипидар, лакоткани, клеенку, гранитоль,
  • сено, силос и т. п.

Длительность процесса самовозгорания веществ можно рассчитать по формулам: (1.38.) (1.39) где t — начальная температура процесса самовозгорания, °С; t- длительность процесса самовозгорания, ч; S — удельная поверхность штабеля (кучи), м2/м3; Ар, Аb, nр, nb — константы, определяемые опытным путем (приведены в справочниках). Используя формулы, можно определить температуру начала саморазогрева, если известны размеры штабеля и предполагаемый срок хранения данного материала. Можно определить также длительность периода безопасного хранения, зная размеры штабеля и начальную температуру вещества, либо допустимые размеры штабеля — по начальной температуре и предполагаемой длительности хранения вещества. Контакт самовозгорающихся химических веществ с воздухом происходит обычно при:

  • повреждении тары,
  • розливе жидкости,
  • расфасовке веществ,
  • при сушке,
  • открытом хранении твердых измельченных, а также волокнистых, листовых и рулонных материалов,
  • вскрытии аппаратов для осмотра и ремонта,
  • откачке жидкостей из резервуаров, когда внутри резервуаров имеются самовозгорающиеся отложения.

Наиболее специфичными для производственной аппаратуры являются случаи самовозгорания отложений сернистых соединений железа и термополимеров. Сернистые соединения железа образуются в результате химического взаимодействия сероводорода или свободной серы со стенками стальных аппаратов. Этот процесс протекает чаще всего при переработке и хранении сернистых нефтей и нефтепродуктов, хранении, очистке и переработке природного и попутного нефтяного газа, а также отходящих газов нефтепереработки, получении и очистке генераторных газов, водорода, коксового газа и т. д. Наиболее активным по склонности к самовозгоранию является закисный сульфид железа. Окисление сернистых соединений железа начинается с подсыхания поверхности и соприкосновения ее с кислородом воздуха. При этом температура постепенно повышается, появляется голубой дымок, а затем небольшие язычки пламени. В результате отложения разогреваются иногда до 600. 700° С. Избежать самовозгорания сернистого железа можно путем химической очистки от сероводорода поступающих на обработку веществ, а также постепенным окислением образовавшихся в аппаратах самовозгорающихся отложений. Замедляют процесс окисления самовозгорающихся соединений путем добавки небольшого количества воздуха (до 0,5%) к водяному пару, подаваемому на продувку аппаратов, либо путем заполнения аппарата водой и постепенного снижения ее уровня. Очистку стенок аппаратов следует вести при постоянном смачивании их водой, а получающиеся зачистки сразу же удалять и подвергать уничтожению. Когда производственный процесс связан с использованием веществ, склонных к полимеризации, имеется возможность образования так называемых термополимеров. Они представляют собой рыхлое губчатое вещество со значительным количеством неиспользованных в процессе полимеризации кратных связей. Наличие этих связей и развитая поверхность термополимера определяют его способность к окислению и самовозгоранию при соприкосновении с воздухом. Образование термополимеров предупреждают введением ингибиторов, устранением в технологической линии застойных участков и тупиков. Образовавшиеся.термополимеры удаляют с поверхности аппаратов с такими же мерами предосторожности, с какими удаляют сернистые соединения железа. В зависимости от первоначального импульса различают:

  1. тепловое самовозгорание (нагрев извне),
  2. химическое самовозгорание (нагрев при контакте с химически активным веществом),
  3. микробиологическое самовозгорание (нагрев в результате жизнедеятельности микроорганизмов).

Длительность процесса самовозгорания (она колеблется от нескольких минут до нескольких месяцев) зависит от большого числа различных факторов, которые в сложном взаимодействии друг с другом определяют скорость протекания экзотермических реакций и условия аккумуляции тепла. Длительность протекания процесса самовозгорания веществ рассчитывают в соответствии с ГОСТ 12.1.044-89. Мероприятия, предупреждающие самовоспламенение веществ на воздухе:

  1. Исключение их контакта с воздухом путем надежной герметизации технологического оборудования и предупреждения его повреждений.
  2. Снижение скорости протекания химических реакций и биологических процессов осуществляют различными методами:
    1. ограничением влажности при хранении веществ и материалов;
    2. снижением температуры хранения веществ и материалов (например, зерна, комбикормов) путем искусственного захолаживания;
    3. хранением веществ (например, пищевых продуктов) в среде с пониженным содержанием кислорода;
    4. уменьшением удельной поверхности контакта самовозгорающихся веществ с воздухом (брикетирование, гранулирование порошкообразных веществ);
    5. пассивированием химически активных веществ, например технического углерода, путем частичной и постепенной их дезактивации кислородом воздуха;
    6. применением антиокислителей и консервантов (например, при хранении комбикормов);
    7. устранением контакта с кислородом воздуха и химически активными веществами (перекисными соединениями, кислотами, щелочами и т.п.) путем раздельного хранения самовозгорающихся веществ в герметичной таре.
  3. Устранение условий аккумуляции тепла осуществляют следующим образом:
    1. ограничением размеров штабелей, караванов или куч хранимого вещества;
    2. активным вентилированием воздухом (сена и других волокнистых растительных материалов);
    3. периодическим перемешиванием веществ при их длительном хранении;
    4. снижением интенсивности образования горючих отложений в технологическом оборудовании с помощью улавливающих устройств;
    5. периодической очисткой технологического оборудования от самовозгорающихся горючих отложений.

Вещества, воспламенение которых происходит при контакте с водой или влагой воздуха. К веществам, воспламеняющимся или вызывающим горение при соприкосновении с водой, следует отнести:

  • щелочные металлы,
  • карбид кальция,
  • карбиды щелочных металлов,
  • негашеную известь,
  • фосфористый кальций,
  • фосфористый натрий,
  • сернистый натрий,
  • гидросульфит натрия.

Многие из этих веществ (щелочные металлы, карбиды) при взаимодействии с водой образуют горючие газы, воспламеняющиеся от теплоты реакции: 2K+2H20=2KOH+H2+Q. Пример: при взаимодействии небольшого количества (3. 5 г) калия и натрия с водой развивается температура выше 600. 650° С. Если взаимодействуют более крупные куски, происходят взрывы с разбрызгиванием расплавленного металла. В мелкораздробленном состоянии щелочные металлы воспламеняются во влажном воздухе. Сильное разогревание может произойти при взаимодействии карбида кальция с водой: СаС2+2Н20==Са(ОН)22Н2+Q. Пример: для разложения 1 кг химически чистого карбида кальция необходимо 0,562 кг воды. При таком или меньшем количестве воды в зоне реакции развивается температура до 800. 1000°С. При этом куски карбида кальция раскаляются до свечения. Естественно, что образующийся в таких условиях ацетилен воспламеняется при контакте с воздухом, так как температура его самовоспламенения равна 335°С. При взаимодействии карбида с большим количеством воды ацетилен не воспламеняется, потому что тепло реакции поглощается водой. Карбиды щелочных металлов при соприкосновении с водой реагируют со взрывом. Некоторые вещества, например негашеная известь, являются негорючими, но теплота реакции их с водой может нагреть соприкасающиеся горючие материалы до температуры самовоспламенения. Так, при контакте стехиометрического количества воды с негашеной известью температура в зоне реакции может достичь 600° С: CaO+H20=Ca(OH)2+Q. Известны случаи пожаров деревянных складов, в которых хранилась негашеная известь. Пожары возникали, как правило, вскоре после дождя: вода попадала на негашеную известь через неисправную крышу или через щели пола. Во влажном состоянии гидросульфид натрия и сернистый натрий интенсивно окисляются на воздухе с выделением свободной серы и большого количества тепла. Выделяющееся тепло нагревает серу до воспламенения (при влажности 10% воспламенение серы наступает при температуре 242° С). Опасен контакт с водой алюминийорганических соединений, так как триэтилалюминий, диэтилалюминийхлорид, триизобутилалюминий и другие подобные им вещества взаимодействуют с водой со взрывом. Контакт веществ с водой или влагой воздуха происходит обычно:

  • при повреждении аппаратов и трубопроводов,
  • при неисправности тары
  • при открытом хранении этих веществ.

Однако вода может проникнуть в помещение и в следующих случаях:

  • через открытые проемы в стенах,
  • при неисправности покрытия или пола,
  • при повреждении водопроводной линии и системы водяного отопления,
  • при конденсации влаги из воздуха и т. п.

Взрывы или усиление начавшегося пожара могут иметь место при попытках тушить подобные вещества водой или пеной. Выбор средств и способов тушения производится с учетом свойств веществ, обращающихся в производстве. Предупреждение воспламенения веществ при взаимодействии с водой или влагой воздуха обеспечивают защитой их от контакта с водой и влажным воздухом путем:

  1. изолированного хранения веществ этой группы от других горючих веществ и материалов;
  2. поддержанием избыточного количества воды (например, в аппаратах для получения ацетилена из карбида кальция).

Вещества, воспламенение которых происходит при контакте друг с другом. Воспламенение химических веществ при взаимоконтакте — явление, часто наблюдающееся в производстве. Чаще всего такие случаи происходят при действии окислителей на органические вещества. В качестве окислителей выступают хлор, бром, фтор, окислы азота, азотная кислота, перекиси натрия, бария и водорода, хромовый ангидрид, двуокись свинца, хлорная известь, жидкий кислород, селитры (нитраты аммония, щелочных и щелочноземельных металлов), хлораты (соли хлорноватой кислоты, например бертолетова соль), перхлораты (соли хлорной кислоты, например хлорнокислый натрий), перманганаты (соли марганцевой кислоты, например марганцовокислый калий), соли хромовой кислоты и др. Окислители, соприкасаясь или смешиваясь с органическими веществами, вызывают их воспламенение. Некоторые окислители (селитры, хлораты, перхлораты, перманганаты, соли хромовой кислоты) образуют смеси с органическими веществами, взрывающиеся от незначительного механического или теплового воздействия. Некоторые смеси окислителей и горючих веществ способны воспламеняться при действии на них серной или азотной кислоты или небольшого количества влаги. Алюминийорганические соединения, входя в контакт с кислотами, спиртами и щелочами, реагируют со взрывом. Многие инициаторы, катализаторы и порообразователи, широко используемые в производства синтетических смол, пластических масс, синтетических волокон и каучука, воспламеняются и взрываются при взаимодействии с другими веществами. Пожароопасные свойства некоторых инициаторов и порофоров указаны в табл. Пример: на заводе синтетического каучука произошел взрыв емкости с гидроперекисью изопропилбензола (гиперизом), который вызвал повреждения производственных коммуникаций, фасада здания и лестничной клетки. Гипериз, используемый в качестве инициатора при производстве бутадиенстирольного каучука, поступал на завод в металлических бочках и перекачивался по резиновому шлангу в приемную емкость. Около бочек с гиперизом находились бочки с триэтаноламином. По ошибке в емкость с гидроперекисью стали закачивать триэтаноламин. Произошла бурная реакция, вызвавшая разложение всей массы гидроперекиси с указанными выше последствиями. Реакции взаимодействия окислителя с горючим веществом способствуют:

  • измельченность вещества,
  • повышенная начальная его температура,
  • наличие инициаторов химического процесса.

В некоторых случаях реакции носят характер взрыва. Поэтому окислители нельзя хранить совместно с другими горючими веществами, нельзя допускать какого-либо контакта между ними, если это не обусловлено характером технологического процесса.

Вещество Пожароопасные свойства
Метилуретанбензолсульфогидразид (ЧХЗ-5) Горючее вещество. В смеси с сильными окислителями взрывается
Динитрозопентаметилентетрамин (ЧХЗ-18) Нестойкое горючее вещество. Дает вспышку в смеси с кислотами и щелочами, взрывается с сильными окислителями
Азодинитрилизомасляной кислоты (ЧХЗ-57) Чувствителен к воздействию температуры, трению, удару. Температура воспламенения 60° С, самовоспламенения 240° С. При контакте с кислотами взрывается.
Персульфат аммония Сильный окислитель. В смеси с органическими соединениями может вызвать взрыв
Персульфат калия Сильный окислитель. Активно окисляет органические соединения, воспламеняет бумагу, ткани, древесину
Перекись водорода Сильный окислитель. В концентрированном виде воспламеняет все органические вещества и склонна к взрывному распаду
  1. раздельным складированием;
  2. устранением причин их аварийного выхода из аппаратов и трубопроводов.
  1. защиты от нагревания до критических температур;
  2. механических воздействий (ударов, трения, давления и т.п.).
  • несоответствия электрооборудования номинальным токовым нагрузкам или характеру окружающей среды (влажности, температуры, химической активности);
  • перегрузки электрических сетей и электродвигателей — приводов вращающихся узлов и механизмов технологических машин и аппаратов (смесителей и реакторов с перемешивающими устройствами, вращающихся барабанных сушилок, молотковых и шаровых мельниц, подъемно-транспортных устройств и т.п.);
  • механических повреждений электрооборудования и т. п.
  • электрических искровых разрядов, образующихся чаще всего в токосъемных щетках электродвигателей и в пускорегулирующей аппаратуре (аппаратах управления);
  • электрической дуги при коротких замыканиях;
  • перегрева при перегрузках электрооборудования;
  • больших переходных сопротивлений в местах электрических контактов;
  • искровых разрядов статического электричества и воздействий атмосферного электричества — прямых ударов и вторичных воздействий молнии (электростатической и электромагнитной индукции);
  • индукционного и диэлектричсеского нагрева
  1. Обеспечивается правильным выбором уровня и вида взрывозащиты электродвигателей и аппаратов управления, другого электрического и вспомогательного оборудования в соответствии с классом пожаро- или взрывоопасности зоны, категории и группы взрывоопасной смеси (для взрывоопасных зон), а также с общими свойствами и характером окружающей среды (влажностью, температурой, химической активностью и т.п.).
  2. Систематическое проведение испытаний сопротивления изоляции электросетей и электрических машин в соответствии с графиком планово-предупредительного ремонта.
  3. Надежная защита электрооборудования от токов короткого замыкания быстродействующими предохранителями и автоматическими выключателями (автоматами).
  4. Предупреждение технологической перегрузки.
  5. Аварийное отключение электрических машин в тех случаях, когда в них появляется дым или огонь, заметно снижается частота вращения валов, происходит чрезмерный перегрев подшипников.
  6. Предупреждение больших переходных сопротивлений путем систематического осмотра и ремонта контактной части электрооборудования;
  7. Исключение разрядов статического электричества путем заземления технологического оборудования.
  8. Защите зданий, сооружений, отдельно стоящих аппаратов от прямых ударов молнии молниеотводами и от вторичных ее воздействий.

Источников зажигания, вероятные источники зажигания. Виды источников зажигания Источники зажигания их классификация

Источник зажигания – объект воздействия на горючую среду, обладающий запасом энергии или температурой, достаточной для инициирования горения.

Для того чтобы вызвать горение вещества, необходимо воздействовать на него источником зажигания, под которым понимаются горящее или накаленное тело, а также электрический разряд, обладающие запасом энергии и температурой, достаточными для возникновения горения других веществ. Горение возникает и без воздействия источника зажигания, вследствие самовозгорания, которое представляет собой результат резкого увеличения скорости экзотермических реакций окисления, вызванного внешним воздействием или внутренними процессами. Независимо от механизма возгорания и природы источника зажигания, процесс возникновения горения характеризуется понятием индукционного периода, под которым понимается интервал времени нагревания вещества до момента появления признаков горения. Это время необходимо для того, чтобы вещество нагрелось до температуры испарения, термического разложения и т.д. (с соответствующим выделением горючих компонентов и их смешением с окислителем, без чего невозможно образование горючей среды), а также для доведения этой среды до состояния воспламенения или самовоспламенения. Для процесса самовозгорания твердых веществ также характерен период индукции, в течение которого активизируются процессы самонагревания, реализующиеся, в конце концов, в возгорании.

1. Термические источники зажигания

Открытый огонь (непотушенной спички; топки; печи; зажигалки; паяльной лампы; керосинового нагревательного или осветительного прибора; свечи; газовой горелки; костра; факела; огневого реактора; газовой плиты и т.п.).

Нагретая поверхность (огневого воздухонагревателя; печи; радиатора; трубопровода; химического реактора; установки для адиабатического сжатия прессуемых пластмасс и т.п.).

Искры (из топки; двигателей внутреннего сгорания; огневой сушилки; при газосварке и т.п.).

Очаг тления (непотушенная сигарета; головешка; остатки непотушенного костра; частицы угля, шлака).

Нагретый газ (как продукт химических реакций и сжатия газов; газообразные продукты сгорания, выходящие из огневых сушилок, печей, двигателей внутреннего сгорания, топок; образующиеся при горении факелов, костров и т.п.).

2. Механические источники зажигания

Разогретые от трения детали и материалы (подшипники при перекосе, заклинивании, дефектах смазки; транспортерные ленты; приводные ремни на шкивах механизмов при пробуксовке, заклинивании, перегрузке; волокна материала, намотанного на вал; обрабатываемые на станках материалы при увеличении скорости резания, сверления, увеличении глубины подачи, работе затупленным инструментом и т.п.).

Искры фрикционные (при шлифовании; работе металлическим инструментом; перемещении камней, частиц металла в дробилках и измельчителях; ударах лопатки вентилятора о кожух, крышки металлического люка – о раму и т.п.).

Очаг тепловыделения при микробиологических процессах.

Очаг тепловыделения при химической реакции (при самовозгорании пирофорного вещества; взаимодействии вещества с водой; взаимодействии вещества с кислородом воздуха; взаимодействии веществ друг с другом).

Очаг внутреннего тепловыделения при внешнем тепловом, физическом воздействии на вещество (тепла; света; удара; трения).

4. Электрические источники зажигания

Разряд атмосферного электричества (прямой удар молнии; вторичное воздействие; занос высокого потенциала молнии).

Разряд статического электричества между проводящими телами.

Газовый разряд (дуговой; искровой; тлеющий; коммутационный).

Нагретая поверхность токопроводников, корпусных деталей (при коротком замыкании; токовой перегрузке в электросетях вследствие увеличения момента на валу электродвигателя – при повышении напряжения в сети, подключении дополнительного электроприемника, несоответствии сечения электропроводки нагрузке в сети, аварийном отключении одной фазной линии питания трехфазного двигателя; при увеличении электросопротивления из-за переходного сопротивления на контактирующих деталях – в электронагревательных приборах для отопления, приготовления пищи, в электроосветительных приборах с лампами накаливания и люминесцентными светильниками; при наличии на элементах электротехнических устройств тока утечки; при попадании напряжения на корпус электротехнических устройств или детали, которые нормально током не обтекаются).

Раскаленные частицы металла (при коротком замыкании; электрической сварке; выключении и включении в коммутирующих аппаратах).

Вид источника зажигания характерен для определенных условий и процессов и отражается на динамике развития пожара. Однако для горючего материала не принципиально, чем обусловлена высокая температура нагретой поверхности: электронагревательным элементом, огневой топочной камерой или вихревыми токами, наведенными в стальном изделии за счет действия электромагнитного поля. Все эти подробности относятся к стадии диагностирования природы источника зажигания, чтобы затем уже говорить о причастности соответствующего явления к возникновению пожара. Сама же природа происхождения источника зажигания не имеет принципиального значения на стадии решения вопроса о том, возгорается ли данное вещество (данный материал) в известных условиях.

Сравнительный анализ показывает, что для экспертных исследований наиболее характерно решение задач относительно следующих видов источников зажигания:

1) открытый огонь;

2) нагретая поверхность (при контакте с веществом);

3) нагретая поверхность (при тепловом излучении);

5) горящие частицы (искры);

6) раскаленные частицы вещества (искры фрикционные, частицы металла и шлака в зоне газоэлектросварочных работ и т.п.);

8) очаг внутреннего тепловыделения микробиологической природы;

9) очаг внутреннего тепловыделения при химической реакции;

10) очаг внутреннего тепловыделения при тепловом воздействии;

11) дуговой газовый разряд;

12) искровой газовый разряд.

3. Параметры предполагаемого источника зажигания

Параметры предполагаемого источника зажигания можно определить расчетным или опытным путем, а горючей среды — по справочной литературе.

В условиях производства существует большое количество различных источников зажигания.

Вероятность возникновения источника зажигания принимают равной нулю в следующих случаях:

если источник не способен нагреть вещество выше 80% значения температуры самовоспламенения вещества или температуры самовозгорания вещества, имеющего склонность к тепловому самовозгоранию;

если энергия, переданная тепловым источником горючему веществу (паро-, газо-, пылевоздушной смеси) ниже 40% минимальной энергии зажигания;

если за время остывания теплового источника он не способен нагреть горючие вещества выше температуры воспламенения;

если время воздействия теплового источника меньше суммы периода индукции горючей среды и времени нагрева локального объема этой среды от начальной температуры до температуры воспламенения.

По времени действия различают:

постоянно действующие (они предусмотрены технологическим регламентом при нормальном режиме работы оборудования);

потенциально возможные источники зажигания, возникающие при нарушениях технологического процесса.

По природе проявления различают следующие группы источников зажигания:

открытый огонь и раскаленные продукты сгорания;

тепловое проявление механической энергии;

тепловое проявление химических реакций;

тепловое проявление электрической энергии.

Следует иметь в виду, что эта классификация носит условный характер. Так, открытый огонь и раскаленные продукты сгорания имеют химическую природу проявления. Однако, учитывая особую пожарную опасность, эту группу принято рассматривать отдельно.

Открытый огонь и раскаленные продукты сгорания.

Под производственными источниками зажигания следует понимать такие источники, существование или появление которых связано с осуществлением технологических процессов производств.

4. Производственные источники зажигания

Производственные источники зажигания характеризуются воспламеняющей способностью, которую оценивают упрощенно — путем сравнения температуры, теплосодержания и времени его теплового действия с соответствующими характеристиками горючей смеси.

В условиях производства для осуществления многих технологических процессов используется открытое пламя, например, в аппаратах огневого действия (трубчатых печах, реакторах, сушилках и т. п.), при производстве огневых работ, при сжигании выбрасываемых в атмосферу паров и газов на факельных установках.

Поэтому открытый огонь и раскаленные продукты сгорания обычно используются или образуются в огневых печах, заводских факельных установках и при проведении огневых работ. Кроме этого, высоконагретые продукты сгорания, образующиеся при сжигании топлива в топках и двигателях внутреннего сгорания; искры топок и двигателей, образующиеся в результате неполного сгорания твердого, жидкого или газообразного топлива.

Мероприятия, предупреждающие пожары от открытого огня и раскаленных продуктов горения:

Изоляция аппаратов огневого действия:

Рациональное размещение на открытых площадках;

Устройство противопожарных разрывов;

Устройство между аппаратами огневого действия и газопароопасными аппаратами экранов в виде стен или отдельных закрытых линий, выполненных из негорючих материалов;

Устройство паровых завес по периметру печей с газоопасных сторон.

Соблюдение правил пожарной безопасности при проведении огневых работ.

Изоляция высоконагретых продуктов сгорания:

Контроль за состоянием дымовых каналов;

Защита высоконагретых поверхностей (трубопроводов, дымовых каналов) теплоизоляцией;

Устройство противопожарных разделок и отступок и т.п.

Защита от искр при работе топок и двигателей:

Соблюдение оптимальных температур и соотношения между топливом и воздухом в горючей смеси;

Контроль за техническим состоянием и исправностью устройств для сжигания топлива;

Систематическая очистка внутренних поверхностей топок, дымовых каналов и двигателей внутреннего сгорания от сажи и нагаромасляных отложений;

Ограничение источников огня, не вызванных потребностями технологического процесса:

Оборудование мест для курения;

Применение горячей воды, пара, для обогрева замерзших труб;

Распаривание и очистка скребками отложений в аппаратах вместо их выжигания.

Тепловое проявление механической энергии.

При взаимном трении тел за счет совершения механической работы происходит их разогрев. При этом механическая энергия переходит в тепловую. Тепловой нагрев, т. е. температура трущихся тел в зависимости от условий трения может быть достаточной для воспламенения горючих веществ и материалов. При этом нагретые тела выступают в качестве источника зажигания.

В производственных условиях наиболее распространенными случаями опасного нагрева тел при трении являются:

удары твердых тел с образованием искр;

поверхностное трение тел;

Удары твердых тел с образованием искр.

При определенной силе удара некоторых твердых тел друг о друга могут образовываться искры, которые называют искрами удара или трения.

Искры представляют собой нагретые до высокой температуры (раскаленные) частицы металла или камня (в зависимости от того, какие твердые тела участвуют в соударении) размером от 0,1 до 0,5 мм и более.

Температура искр удара из обычных конструкционных сталей достигает температуры плавления металла — 1550 °С.

Несмотря на высокую температуру искры ее воспламеняющая способность сравнительно невысока, т. к. из-за малых размеров (массы) запас тепловой энергии искры очень мал. Искры способны воспламенить парогазовоздушные смеси, имеющие малый период индукции, небольшую минимальную энергию зажигания. Наибольшую опасность в этой связи представляют ацетилен, водород, этилен, оксид углерода и сероуглерод.

Воспламеняющая способность искры, находящейся в покое, выше летящей, так как неподвижная искра медленнее охлаждается, она отдает тепло одному и тому же объему горючей среды и, следовательно, может его нагреть до более высокой температуры. Поэтому искры, находящиеся в покое, способны воспламенить даже твердые вещества в измельченном виде (волокна, пыли).

Искры в условиях производства образуются при работе с инструментом ударного действия (гаечными ключами, молотками, зубилами и т. п.), при попадании примесей металла и камней в машины с вращающимися механизмами (аппараты с мешалками, вентиляторы, газодувки и т. п.), а также при ударах подвижных механизмов машины о неподвижные (молотковые мельницы, вентиляторы, аппараты с откидными крышками, люками и т. п.).

Мероприятия по предупреждению опасного проявления искр от удара и трения:

Применение во взрывоопасных зонах (помещениях) применять искробезопасного инструмента.

Обдув чистым воздухом места производства ремонтных и др. работ.

Исключение попадания в машины металлических примесей и камней (магнитные уловители и камнеуловители).

Для предупреждения искр от ударов подвижных механизмов машин о неподвижные:

Тщательная регулировка и балансировка валов;

Проверка зазоров между этими механизмами;

Недопущение перегрузки машин.

Применять искробезопасные вентиляторы для транспортировки паро- и газовоздушных смесей, пылей и твердых горючих материалов.

В помещениях получения и хранения ацетилена, этилена и т.п. полы выполнять из неискрящего материала или застилать их резиновыми ковриками.

Поверхностное трение тел.

Перемещение относительно друг друга соприкасающихся тел требует затраты энергии на преодоление сил трения. Эта энергия почти целиком превращается в теплоту, которая, в свою очередь, зависит от вида трения, свойств трущихся поверхностей (их природы, степени загрязнения, шероховатости), от давления, размера поверхности и начальной температуры. При нормальных условиях выделяющееся тепло своевременно отводится, и этим обеспечивается нормальный температурный режим. Однако при определенных условиях температура трущихся поверхностей может повыситься до опасных значений, при которых они могут стать источником зажигания.

Причинами роста температуры трущихся тел в общем случае является увеличение количества тепла или уменьшение теплоотвода. По этим причинам в технологических процессах производств происходят опасные перегревы подшипников, транспортных лент и приводных ремней, волокнистых горючих материалов при наматывании их на вращающиеся валы, а также твердых горючих материалов при их механической обработке.

Мероприятия по предупреждению опасного проявления поверхностного трения тел:

Замена подшипников скольжения на подшипники качения.

Контроль за смазкой, температурой подшипников.

Контроль за степенью натяжения транспортерных лент, ремней, не допущение работы машин с перегрузкой.

Замена плоскоременных передач на клиноременные.

Для предупреждения наматывания волокнистых материалов на вращающиеся валы используют:

применение свободнонасаженных втулок, кожухов и т.п. для защиты открытых участков валов от контакта с волокнистым материалом;

устройство специальных ножей для срезания наматывающихся волокнистых материалов;

установка минимальных зазоров между валом и подшипником.

При механической обработке горючих материалов необходимо:

соблюдать режим резания,

своевременно затачивать инструмент,

использовать локальное охлаждения места резания (эмульсии, масла, вода и т.п.).

5. Электрический ток как источник зажигания

Электрический ток является одним из распространенных источников зажигания в современных зданиях. Мы не случайно поставили его на второе место после открытого огня, так как более 10% пожаров происходит вследствие аварийной работы электрических сетей и приборов.

Необходимо отметить, что данный вид источников зажигания менее опасен, чем открытый огонь и, при правильной эксплуатации электросети, наличии надежных защитных устройств, вероятность пожара сводится к нулю.

Что необходимо знать о пожарной опасности электроустановок, т.е. жилого (хозяйственного и т.п.) помещения вместе со всеми электрическими сетями, коммуникациями и приборами? Прежде всего, что источником зажигания является тепло, выделяемое электрическими сетями и приборами в аварийных режимах работы. Короткое замыкание, перегрузка, переходные сопротивления — характерные проявления аварийных режимов.

К каждой линии электросети должно подключаться столько электроприборов, чтобы их общая мощность не превышала расчетной мощности сети. Для сети освещения в 220 В с предохранителями в 6 А мощность составляет 1. ЗкВт, с предохранителями в 10 А — 2,2 кВт. Зная паспортные значения мощности электроприборов, нетрудно подсчитать общее их количество, допустимое к подключению в электросеть. Но и здесь у вас не будет проблем, если в электросчетчике установлены автоматические предохранители: всякое превышение установленной для сети мощности будет сопровождаться автоматическим отключением электроэнергии. Но если у вас пробковые предохранители с «жучками», то в этом случае общая мощность электросети увеличивается на толщину «жучка», что ведет к перегрузке электросети.

Перегрузкой называется такое явление, когда по электрическим проводам и электрическим приборам идет ток больше допустимого. Опасность перегрузки объясняется тепловым действием тока. При двукратной и большей перегрузке сгораемая изоляция проводников воспламеняется. При небольших перегрузках происходит быстрое старение изоляции и срок ее диэлектрических свойств сокращается. Так, перегрузка проводов на 25% сокращает срок службы их примерно до 3-5 месяцев вместо 20 лет, а перегрузка на 50% приводит в негодность провода в течение нескольких часов.

Коротким замыканием (КЗ) называется всякое замыкание между проводами, или между проводом и землей (под «землей» здесь понимается любое токопроводящее изделие, отличное от провода, в т. ч. и тело человека). Причиной возникновения КЗ является нарушение изоляции в электрических проводах и кабелях, машинах и аппаратах, которое вызывается: перенапряжениями; старением изоляции; механическими повреждениями изоляции; прямыми ударами молнии. При возникновении КЗ в цепи ее общее сопротивление уменьшается, что приводит к увеличению токов в ее ветвях по сравнению с токами нормального режима.

Переходным сопротивлением (ПС) называется сопротивление, возникающее в местах перехода тока с одного провода на другой или с провода на какой-либо электроаппарат при наличии плохого контакта в местах соединений и оконцеваний (при скрутке, например). При прохождении тока в таких местах за единицу времени выделяется большое количество теплоты. Если нагретые контакты соприкасаются с горючими материалами, то возможно их воспламенение, а при наличии взрывоопасных смесей взрыв. В этом и заключается опасность ПС, которая усугубляется тем, что места с наличием переходных сопротивлений трудно обнаружить, а защитные аппараты сетей и установок, даже правильно выбранные, не могут предупредить возникновение пожара, так как электрический ток в цепи не возрастает, а нагрев участка с ПС происходит только вследствие увеличения сопротивления.

Искрение и электродуга есть результат прохождения тока через воздух. Искрение наблюдается при размыкании электрических цепей под нагрузкой (например, когда вынимается электровилка из электророзетки), при пробое изоляции между проводниками, а также во всех случаях при наличии плохих контактов в местах соединения и оконцевания проводов и кабелей. Под действием электрического поля воздух между контактами ионизируется и, при достаточной величине напряжения, происходит разряд, сопровождающийся свечением воздуха и треском (тлеющий разряд). С увеличением напряжения тлеющий разряд переходит в искровой, а при достаточной мощности искровой разряд может быть в виде электрической дуги. Искры и электродуги при наличии в помещении горючих веществ или взрывоопасных смесей могут быть причиной пожара и взрыва.

А сейчас сформулируем общие принципы пожарной безопасности от искр, дуг, перегрузок, коротких замыканий и переходных сопротивлений. Эти явления невозможны, если:

Правильно производить соединение и оконцевание проводников;

Тщательно соединять провода и кабели (пайкой, сваркой, опрессовкой, специальными сжимами);

Правильно выбирать сечение проводников по нагреву электрическим током;

Ограничить параллельное включение токоприемников в сеть;

Создавать условия для охлаждения проводов электроприборов и аппаратов;

Применять только калиброванные плавкие предохранители или автоматические выключатели;

Проводить планово-предупредительные осмотры и измерения сопротивления изоляции проводов и кабелей;

Устанавливать быстродействующие аппараты защиты (с чем повседневно успешно справляется АСТРО*УЗО);

Защищать от окисления разъединяемые контакты.

Рис. 9. Классификация источников зажигания

Следует отметить, что приведенные классификации весьма условны. Рассмотрим некоторые виды источников зажигания более подробно:

Открытое пламя обычно имеет температуру 800 — 1000 К, а при горении отдельных видов горючих веществ достигает 3000 К. Так, например, температура пламени зависит от вида горючего вещества и условий горения и может меняться в широких пределах:

Открытое пламя во всех случаях приводит к воспламенению горючих газо-, паро- и пылевоздушных смесей, так как его минимальная температура 870-970 ºК, что всегда выше температуры самовоспламенения известных горючих веществ. Практически для воспламенения горючей смеси надо гораздо меньше теплоты, чем та, которую содержит любое пламя любого размера. Для воспламенения твердых веществ помимо высокой температуры требуется более длительное воздействие пламени. Так, например, термит, температура горения которого около 3300 К, за две секунды прожигает сосновую доску толщиной 15 мм насквозь, но не зажигает ее. В то же время пламя объемом всего один см 3 с температурой 1200 К при воздействии в течение 15-20 с воспламеняет ее.

Открытое пламя часто является источником большого количества лучистой энергии.

Топочные искры образуются при сжигании топлива. Искры возникают в результате различных причин, обусловленных несовершенством оборудования и организации самого процесса горения. Температура таких искр достаточно высокая — более 1000 К. Искры способны воспламенять только подготовленные к горению газопаровоздушные смеси, осевшую горючую пыль, пролитые жидкости и т.п.

Искры трения и соударения образуются при соударении или трении деталей машин и оборудования, инструментов, твердых предметов и т.п. При этом происходит механическое разрушение поверхности материала и отрыв различных по величине частичек разогретого вещества, чаще всего металла. Высокая начальная температура и скорость окисления этих частичек предопределяет их способность разогреваться во время полета. При соударении стальных деталей с содержанием углерода до 0,8 % максимальная начальная температура обрывающихся частиц не ниже 1600 К. Окисление металлических частичек, как и всякая реакция окисления, происходит с выделением теплоты. При оптимальных соотношениях температуры частицы, скорости движения и скорости образования на ее поверхности оксидной пленки может произойти воспламенение окружающей горючей среды. Большую роль при этом играет продолжительность соприкосновения такой искры с горючей смесью. Так, например, время существования искр от трения стали о наждачный камень не превышает в среднем одной секунды, а их температура — не выше 870- 970 К. Такие искры не могут воспламенить природный газ, у которого период индукции равен нескольким секундам при самовоспламенении. Если время жизни этих искр увеличить до трех секунд, то природный газ воспламенится.

До недавнего времени считалось, что истирание таких мягких металлов, как медь и алюминий, не может приводить к пожароопасному искрообразованию. Однако оказалось, что они в определенных условиях могут давать опасные искры. И наоборот, многие металлы и сплавы при истирании не дают пожароопасных искр с высокой энергией.

Способность металлов и сплавов к фрикционному искрообразованию обуславливается, в первую очередь, их химической природой, а не твердостью.

Особый характер имеет искрообразование при соударении и трении алюминиевых деталей со стальными поверхностями, покрытыми ржавчиной. В этом случае протекает термитная химическая реакция с выделением большого количества теплоты:

Fе 2 О 3 + FeO = Fе 3 O 4 – ржавчина

8А1 + 3Fе 3 O 4 ® 4Аl 2 O 3 + 9Fe + 3340 кДж

Разряды статического электричества возникают в результате электризации.Электризация — это разделение положительных и отрицательных зарядов. В настоящее время нет единой теории статического электричества, а существует ряд гипотез. Наиболее распространена гипотеза о контактной электризации жидких и твердых веществ. Электризация возникает при трении двух разнородных веществ, обладающих различными атомными и молекулярными силами притяжения на поверхности соприкосновения. По крайней мере одно из них должно быть диэлектриком. При этом происходит перераспределение электронов и ионов вещества, образующих двойной электрический слой с зарядами противоположных знаков.

Пары и газы электризуются только в том случае, если в них присутствуют твердые или жидкие примеси, либо продукты конденсации. Наэлектризованные тела несут заряды статического электричества и оказывают силовое воздействие друг на друга. В окружающем их пространстве образуется электрическое поле, воздействие которого обнаруживается при внесении в него заряженных или нейтральных тел. Основными его параметрами являютсянапряженность и потенциал отдельных точек. В ряде производств потенциал относительно земли достигает огромных значений. Например, при фильтрации бензина с асфальтом через шелк — 335 кВ. Токи составляют несколько микроампер.

Разряд статического электричества возникает тогда, когда напряженность электростатического поля над поверхностью диэлектрика или проводника достигает критического, пробивного напряжения. Для воздуха пробивное напряжение составляет 3×10 3 В/мм. Статическое электричество может вызвать воспламенение при следующих условиях;

Наличии источников статических зарядов;

Накоплении значительных зарядов на контактирующих поверхностях;

Достаточной разности потенциалов для электрического пробоя среды;

Возможности возникновения электрических разрядов.

Статическое электричество может накапливаться на человеке. Заряд может достигать 15 кВ, а энергия разряда — от 2,5 до 7,5 мДж.

Разряды атмосферного электричества — это электрические разряды в атмосфере между отрицательно заряженным облаком и землей. Молния имеет следующие параметры: сила тока — до 100 кА, напряжение — несколько миллионов вольт, температура — до 30 000 К. Действие молнии — тепловое, силовое и химическое. Длительность разряда – до 0,1 мс, энергия разряда — в среднем 100 МДж. Воздействие молнии обычно двоякое; прямой удар и вторичные проявления (электростатическая индукция). Прямой удар прожигает стальной лист толщиной до 4 мм. Вторичные проявления характеризуются возникновением на больших металлических массах (крыши домов, технологическое оборудование и т.п.) многочисленных искровых разрядов, индуцированных молнией. Энергия их может превышать 250 мДж.

Несмотря на многочисленность источников зажигания, все они по своей природе могут быть разделены на несколько основных видов. Зажигание такими из них, как топочные, фрикционные искры, частички расплавленного металла и т.п. носит тепловую природу и описывается теоретическими представлениями, рассмотренными выше. Электрические искры имеют свои отличительные особенности, поэтому их необходимо рассмотреть отдельно.

Для производственных целей широко используют открытый огонь, огневые печи, реакторы, факелы для сжигания паров и газов. При производстве ремонтных работ часто используют пламя горелок и паяльных ламп, применяют факелы для отогрева замерзших труб, костры для прогрева грунта или сжигания отходов. Температура пламени, а также количество выделяющегося при этом тепла достаточны для воспламенения почти всех горючих веществ. Поэтому главная защита от данных источников зажигания — изоляция от возможного соприкосновения с ними горючих паров и газов (при авариях и повреждениях соседних аппаратов).

При проектировании технологических установок «огневые» аппараты следует изолировать, размещая их в закрытых помещениях, обособленно от других аппаратов. На открытых площадках между «огневыми» аппаратами и пожаровзрывоопасными установками (например, открытыми этажерками) целесообразно размещать закрытые здания, которые будут выполнять роль защитных преград.

Аппараты огневого действия размещают на площадках с соблюдением разрывов, величина которых в зависимости от характера и режима работы смежных аппаратов и сооружений регламентируется нормативными актами.

Особенности пожарной опасности и инженерно-технические мероприятия противопожарной защиты огневых печей как наиболее типичных и широко распространенных аппаратов огневого действия детально рассмотрены в главе 12 данного учебника.

К аппаратам огневого действия следует отнести факельные установки для сжигания газовых выбросов. Недочеты в проектировании и устройстве факельных установок могут привести к тепловому воздействию факела пламени на расположенные вблизи здания, сооружения и аппараты с горючими газами и жидкостями, а также к загазованию территории при внезапном потухании пламени. Следует отметить, что факелы общезаводские или общецеховые менее опасны, чем факелы, расположенные непосредственно на аппаратах, так как имеют большую высоту вертикального ствола и размещены на значительном расстоянии (60. 100 м и более) от взрыво- и пожароопасных зданий и сооружений.

Факельная установка (рис. 5.3) состоит из системы подводящих трубопроводов, предохранительных устройств (огнепреградителей) и факельной горелки. Конструкция горелки должна обеспечивать непрерывность сжигания подаваемого газа путем устройства легко зажигаемого и защищенного от ветра «маяка» (постоянно горящей горелки).

Рис. 5.3. Факел для сжигания газов: / — линия подачи водяного пара; 2 — линия поджигания дежурной горелки;

3 — линия подачи газа к дежурной горелке; 4 — горелка; 5 — ствол факела; 6 — огнепреградитель; 7 — сепаратор;

8 — линия, подводящая газ на сжигание

Поджигание газовой смеси в дежурной горелке производят с помощью так называемого бегущего пламени (предварительно подготовленная горючая смесь воспламеняется электрозапалом, и пламя, перемещаясь вверх, поджигает газ горелки). Чтобы уменьшить образование дыма и искр, к факельной горелке подводят водяной пар.

Следует отметить, что побочные продукты и отходы производства выгоднее не сжигать на факельных установках, а утилизировать.

Источники открытого огня — факелы — нередко используют для разогрева застывшего продукта в трубах, для освещения при осмотре аппаратов в темноте, например при замере уровня жидкостей, при разведении костров на территории объекта с ЛВЖ и ГЖ и т. п. Источником открытого огня является и зажженная спичка. Вот характерный пример. На заводе химического волокна капролактам размещался штабелями в полиэтиленовых мешках, которые, в свою очередь, находились в джутовых мешках (в настоящее время перед поступлением смолы на склад джутовую упаковку снимают). Поздно вечером ученик аппаратчика, разрезая мешок, уронил нож и, чтобы найти его, зажег спичку. От пламени спички воспламенился джутовый мешок. Огонь быстро распространился по штабелю. Возник пожар.

Воспламенение многих веществ возможно от таких «малокалорийных» источников зажигания, как тлеющий окурок сигареты или «Папиросы. Факты и исследования показали, что тлеющие сигарета и папироса имеют температуру 350. 400° С и длительность тления 12 мин и более. Контакт горящего окурка с твердым и волокнистым веществом или пылью вызывает появление очага тления, который при достаточном доступе воздуха и при условиях, способствующих аккумуляции выделяющегося тепла, вызывает пламенное горение вещества. Так, тлеющая папироса или сигарета при наличии оптимальных условий вызывает воспламенение стружек и древесины через 1. 1.5 и 2. 3 ч соответственно (пламя появляется при температуре 450. 500° С); бумажных отходов, сена и соломы -. через 0,25. 1 ч (в зависимости от их плотности); хлопчатобумажных тканей — через 0,5. 1 ч (в зависимости от объемного веса ткани).

В цехах, складах и на территории пожаровзрывоопасных объектов курение разрешается только в специально оборудованных местах.

Для отогрева замерзших труб вместо факелов следует использовать горячую воду, водяной пар или индукционные грелки. Твердые отложения в трубопроводах распаривают и очищают скребками, а при необходимости выжигания трубы демонтируют и осуществляют этот процесс на местах постоянного производства огневых работ или на специально выделенных площадках вне цеха. Выжигание твердых и жидких горючих отложений в воздуховодах без их демонтажа может быть допущено только в исключительных случаях с разрешения госпожнадзора и под непосредственным наблюдением ответственных работников цеха.

К производственным источникам зажигания, как было сказано выше, следует отнести высоконагретые продукты горения — газо- образные продукты горения, образующиеся при горении твердых, жидких и газообразных веществ, имеющих высокую температуру (800. 1200° С и выше). При такой температуре топочных газов наружная поверхность стенок аппаратов может быть нагрета вы­ше температуры самовоспламенения образующихся в производст­ве веществ. Особенно это относится к металлическим выхлопным трубам топок и двигателей внутреннего сгорания

Значительную пожарную опасность представляет выход горючих газов через неисправности кладки топок, дымовых каналов и при повреждении выхлопных труб двигателей внутреннего сгорания. Поэтому при эксплуатации топок и двигателей внутреннего сгорания нужно следить за состоянием кладки дымовых каналов и боровов, не допускать неплотностей и прогара выхлопных труб,а также загрязнения их поверхности горючей пылью или наличия вблизи нагретых поверхностей каких-либо горючих веществ.

Высоконагретые поверхности металлических труб защищают обычно теплоизоляцией с защитными кожухами. Предельно допустимая температура поверхности труб (кожухов) не должна превышать 80% температуры самовоспламенения обращающихся в производстве горючих веществ.

Нередко продукты горения используют в качестве теплоносителя при сушке древесины, щепы, волокнистых; и сыпучих органических материалов. Пожарная безопасность таких устройств рассматривается в главе 15 данного учебника.

Производственным источником зажигания являются искры, возникающие при работе топок и двигателей. Они представляют собой твердые раскаленные частицы топлива или окалины в газовом потоке, которые образуются в результате неполного сгорания или механического уноса горючих веществ и продуктов коррозии. Температура такой твердой частицы достаточно высока, но запас тепловой энергии невелик, так как мала масса искры. Искра способна воспламенить только вещества, достаточно подготовленные к горению, а к таким веществам относятся газо- и паровоздушные смеси (особенно при концентрациях, близких к стехиометрическим), осевшая пыль, волокнистые материалы.

Топки «искрят» из-за конструктивных недостатков; из-за использования не того сорта топлива, на которое печь рассчитана; из-за усиленной шуровки и дутья; из-за неполного сгорания топлива (при недостаточной подаче воздуха или чрезмерной подаче топлива); из-за недостаточного распыления жидкого топлива, а также из-за нарушения сроков очистки печей.

Искры и нагар при работе дизельных и карбюраторных двигателей образуются при неправильной регулировке системы подачи топлива и электрозажигания; при загрязнении топлива смазочными маслами и минеральными примесями; при длительной работе двигателя с перегрузками; при нарушении сроков очистки выхлопной системы от нагара.

Устранение причин искрообразования — это поддержание топок и двигателей в хорошем техническом состоянии, соблюдение установленных режимов сжигания топлива, использование только того вида топлива, на которое рассчитаны топка или двигатель, своевременная их очистка, а также устройство дымовых труб такой высоты, чтобы искры догорали и гасли, не выходя из трубы.

Для улавливания и гашения искр используются искроуловители и искрогасители: осадительные камеры, инерционные камеры и циклоны, турбиновихревые уловители, электрофильтры, а также устройства с использованием водяных завес, охлаждения и разбавления газов водяными парами и т. п. Наиболее распространенную группу представляют искроуловители с использованием сил тяжести и инерции (в том числе центробежных сил). Такими искроуловителями оборудуют дымогазовые сушилки, тракторы, комбайны, автомобили, тепловозы и другие аппараты, механизмы и устройства с использованием двигателей внутреннего сгорания и топок.

В искроосадительных камерах используется принцип осаждения искр под действием силы тяжести (рис. 5.4). При малой скорости движения газа в камере подъемная сила потока, воздействующая на искры, оказывается меньше силы тяжести, и искра оседает (см. § 1.4). Такой искроуловитель громоздок и недостаточно эффективен. Поэтому в чистом виде искроосадительные камеры применяют редко. Но принцип, положенный в основу их работы, используют во многих искрогасителях.

Рис. 5.4. Искроуловитель с ис­пользованием силы тяжести: / — искроосадительная камера; 2 — выхлопная труба

Рис. 5.5. Искроуловитель инерционного действия: / — корпус печи; 2 — топка; 3 — искроосадительная камера; 4 — очистное отверстие

В искроуловителях инерционного действия на пути движения газового потока устанавливают отражательные устройства в виде сеток, перегородок, козырьков, жалюзи и т. п. Газовый поток, встречая препятствие, изменяет направление движения, а искры, двигаясь по инерции, ударяются о препятствие, дробятся, теряют скорость, оседают или догорают. Эффективность улавливания искр такими приборами возрастает с увеличением массы искр и скорости их движения.

Простейший искроуловитель инерционного действия показан на рис. 5.5. Следует отметить, что сетчатые искроуловители малоэффективны: отверстия сеток быстро забиваются, сетки прогорают. Более эффективным является инерционный искроуловитель жалюзийного типа (рис. 5.6), который улавливает 90. 95% всех искр.

В центробежные искроуловители поток газа вводится тангенциально, благодаря чему приобретает вращательное винтообразное движение. Под воздействием центробежной силы искры отбрасываются к стенке, дробятся, истираются и догорают. Такие искроуловители называют циклонами (рис. 5.7).

Искроуловители-электрофильтры применяют для улавливания искр из газового потока силами электрического притяжения. Установка (рис. 5.8) состоит из источника постоянного тока высокого напряжения (40. 75 кВ) А и электрофильтра Б, основными элементами которого являются коронирующие (отрицательно заряженные) и осадительные (положительно заряженные) электроды. Между электродами возникает коронный разряд (или корона), проходя через который газ ионизируется, а искры, сталкиваясь с ионами, приобретают в основном отрицательный заряд, притягиваются к осадительным электродам и осаждаются на них.

Рис. 5.6. Инерционный искроуловитель жалюзийного типа: 1 — линия подачи уловленных искр в циклон;

2 — линия очищенных от искр газов; 3 — жалюзийный искроуловитель; 4 — конические кольца рабочей камеры; 5 — газопровод; 6 — линия возврата газа в жалюзийную камеру; 7 — циклон для очистки газа от искр

Рис. 5.7. Циклонный искроуловитель

Рис. 5.8. Схема электрофильтра: А — машинное отделение; Б — фильтр; / — питающая сеть; 2 — регулятор напряжения; 3 — трансформатор; 4 — выпрямитель; 5 — проходной изолятор; 6 — выход очищенного газа; 7 — коронирующий электрод; 8 — осадительный электрод; 9 — ввод газа с искрами; 10 -бункер

Постепенно на осадительном электроде образуется толстый слой (шуба) отрицательно заряженных отложений частиц пыли и искр, экранирующих его. Поэтому периодически электрофильтр отключается от источника тока, электроды встряхиваются, и осевшие частицы падают в бункер. Степень очистки в электрофильтрах очень высока, так как частицы любых размеров приобретают заряд и при достаточной продолжительности очистки оседают на электроде. Использование электрофильтров во взрывоопасных производствах нежелательно, так как их применение связано с появлением мощных источников зажигания электрической природы (электрические разряды, дуга, короткое замыкание и т. п.) Для более тщательной очистки продуктов горения от искр на пути их движения устанавливают последовательно несколько ступеней искроулавливания, В отличие от искроуловителя, искрогаситель не предотвращает выделения искр в атмосферу, а лишь исключает их пожарную опасность. С помощью искрогасителя уменьшаются температура искр, их размер, теплосодержание.

Большое распространение для выхлопных систем двигателей внутреннего сгорания получили турбинно-вихревые искрогасители центробежного действия (рис. 5.9). Проходя через подвижное лопастное колесо (турбину), поток газа приобретает вращательное движение, за счет чего искры отбрасываются к корпусу, где они истираются и догорают.

Возможны комбинированные защитные устройства с улавливанием и гашением искр, например искрогаситель с водяной завесой.

Следует отметить, что вопросы улавливания и гашения искр при работе топок и двигателей исследованы недостаточно. Нет методик, позволяющих еще на стадии проектирования топки и двигателя определять реальную опасность их «искровыделения». Поиск типа и конструкций искроуловителей и искрогасителей ведется, как правило, эмпирически, поэтому необходима дальнейшая разработка теоретических основ их расчета и конструирования.

В производственных условиях самыми распространенными источниками воспламенения являются:

а) искры, образующиеся при коротких замыканиях, и нагревания участков электросетей и электрооборудования, возникающие при их перегрузках или при появлении больших переходных сопротивлений.

Токи коротких замыканий могут достигать больших величин. Они способны образовать электрическую дугу, что приводит к плавлению проводов, воспламенению изоляции, а также сгораемых предметов, веществ и материалов, находящихся поблизости. Короткие замыкания могут возникать при неправильном подборе и монтаже электросетей и электрооборудования, износе, старении и повреждении изоляции электропроводов и оборудования.

Перегрузки электрических сетей, машин и аппаратов возникают при токовой нагрузке, которая в течение длительного времени превышает величины, допускаемые нормами. Перегрузки возникают также в результате нарушения нормативных требований при проектировании электроснабжения и несоблюдения правил эксплуатации;

б) тепло, выделяющееся при трении во время скольжения подшипников, дисков, ременных передач, а также при выходе газов под высоким давлением и с большой скоростью через малые отверстия;

в) искры, образующиеся при ударах металлических деталей друг о друга или об абразивный инструмент, как, например, удары Лопастей вентилятора о кожух, образование искр при обработке металлов абразивным инструментом и т. п.;

г) тепло, выделяющееся при химическом взаимодействии некоторых веществ и материалов, например, щелочных металлов с водой, окислителей с горючими веществами, а также при самовозгорании веществ, например, промасляной обтирочной ветоши или спецодежды;

д) искровые разряды статического электричества;

е) пламя, лучистая теплота, а также искры, образующиеся, например, при плавке металла и заливке литейных форм, при работе термических печей, закалочных ванн;

ж) искры, образующиеся при электро- и газосварочных работах.

Возникновение пожара возможно предотвратить путем осуществления соответствующих инженерно-технических мероприятий при проектировании и эксплуатации технологического оборудования, энергетических и санитарно-технических установок, а также соблюдением установленных правил и требований пожарной безопасности.

Важнейшими пожарно-профилактическими мероприятиями являются:

правильный выбор электрооборудования и способов его монтажа с учетом пожароопасности окружающей среды, систематический контроль исправности защитных аппаратов и устройств на электрооборудовании, постоянный надзор за эксплуатацией электроустановок и электросетей силами электротехнического персонала;

предупреждение перегрева подшипников, трущихся деталей и механизмов путем своевременной и качественной смазки, контроля за температурой и т. д.;

оборудование эффективной вентиляции, исключающей возможность образования в помещении взрывоопасной смеси, и обеспечение нормальной работы вентиляции в окрасочных и сушильных камерах и других аппаратах;

создание условий, обеспечивающих пожарную безопасность при работе с нагретыми до высокой температуры изделиями и расплавленным металлом, при сварочных и других огневых работах;

изолирование огнедействующих производственных установок и отопительных приборов от сгораемых конструкций и материалов, а также соблюдение режима их эксплуатации;

обеспечение надежной герметизации производственного оборудования и турбопроводов с огнеопасными продуктами и немедленное устранение неисправностей при выявлении утечек продуктов в окружающую среду;

запрещение хранения, транспортирования и содержания на рабочих местах огнеопасных жидкостей и растворов в открытых емкостях (в ведрах, открытых баках и т. п.);

изоляция самовозгорающихся веществ от других веществ и материалов, выполнение правил безопасного их хранения и систематическое контролирование состояния этих веществ;

предупреждение появления искровых разрядов статического электричества при обработке материалов или использовании жидкостей, склонных к электризации;

своевременное удаление промасленных обтирочных материалов и огнеопасных производственных отходов в специальные отведенные для этого места;

проведение разъяснительной работы среди рабочих и служащих по соблюдению правил пожарной безопасности.

При разработке и осуществлении мероприятий по устранению причин возникновения пожаров особое внимание следует уделять пожароопасным производственным цехам и участкам (лакокрасочных покрытий, деревообработки и др.). В этих цехах и на участках необходимо широко применять приборы и аппараты автоматического регулирования параметров, которые влияют на снижение пожарной опасности технологического процесса производства.

(инициаторов горения)

Внутренние (скрытые) источники тепловой энергии – окислительные экзотермические реакции, приводящие к самовозгоранию (самовоспламенению). Воспламенение (загорание) произойдет, если время теплового воздействия внешнего или внутреннего источника теплоты на горючую смесь будет не менее периода, необходимого для развития реакции с формированием фронта пламени, способного к дальнейшему самопроизвольному распространению.

Пути и скорость распространения пламени и развития пожара определяются видом технологического процесса, агрегатным состоянием горючих материалов, размерами производства, техническим состоянием оборудования, уровнем и надежностью противопожарной защиты т.д. и т.п. Это 3-ий фактор ПО, который в каждом отдельном случае требует специального анализа и конкретизации.

2.4. В течение 12-13 мин. преподаватель дает пояснения об образовании горючей среды и технических решения по предупреждению возникновения этой опасности в различных аппаратах, в производственных помещениях и на открытых технологических площадках, где обращаются горючие жидкости, газы или твердыми материалы (пыль, порошки, волокна).

Различные технологические аппараты с пожаровзрывоопасными веществами при определенных условиях могут явиться местом возникновения пожара или взрыва. Для выявления возможности возникновения горения внутри технологического обору­дования необходимо, прежде всего, оценить возможность образования в нем горючей среды.

Для оценки возможности образования горючей среды внутри технологического оборудования необходимо знать основные режимные параметры (рабочую температуру, давление, концентрацию и др.). Эти данные содержатся в технологической документации и являются определяющими при оценке возможности образования горючей среды. К технологической документации относятся технологическая часть проекта (на стадии проектирования производства) и техноло­гический регламент (на стадии эксплуатации производства).

Условия образования горючей среды в аппаратах с веществами различного агрегатного состояния (га­з, жидкость, твердое – пыль, порошок, волокно) несколько отлича­ются и в каждом отдельном случае имеют свои особенности, которые вы рассмотрите на практических занятиях и семинаре.

В закрытых аппаратах с жидкостями горючая среда может образоваться только в том случае, когда над поверхностью (зеркалом) жидкости имеется свободный объем. Сам факт и скорость образования ГС будет зависеть от наличия в этом пространстве окислителя (например, кислород воздуха), от вида (ЛВЖ или ГЖ) и физико-химических свойств жидкости, условий проведения технологического процесса.

Наличие над зеркалом жидкости свободного пространства явля­ется необходимым, но не достаточным условием для образования го­рючей среды. Достаточным условием является уровень концентрации паров, находящийся в концентрационных пределах РП, т.е.

Для аппаратов с неподвижным уровнем жидкости (например, для аппаратов непрерывного действия) оценка возможности образования горючей среды может быть сделана по температуре. При этом, необходимо чтобы рабочая температура жидкости t р была соизмерима со значениями темпера­турных пределов распространения пламени и выполнялось условие:

. (2.2)

Итак, возможность образования горючей среды в закрытых аппаратах с ГЖ и ЛВЖ может быть оценена путем:

Проверки наличия над зеркалом жидкости свободного паровоздушного объема;

Сравнения рабочей концентрации паров жидкости с концент­рационными пределами воспламенения;

Сравнения рабочей температуры жидкости в аппарате со значениями температурных пределов воспламенения.

Основными направлениями защиты от образования горючей среды в аппаратах с горючими и легковоспламеняющимися жидкостями являются:

1. Ликвидация свободного паровоздушного объема одним из следующих способов:

· полное заполнение аппаратов жидкостью;

· хранение горючих и легковоспламеняющихся жидкостей под защитным слоем специальных ПАВ или устройств (плавающая крыша, понтон и др.);

· применение резинотканевых резервуаров.

2. Обеспечение безопасного температурного режима работы ап­паратов , то есть поддержание рабочей температуры t р ниже нижнего или выше верхне­го температурных пределов воспламенения (с учетом коэффициентов безопасности):

(t н — 10) ³ t р ³ (t в + 15). (2.3)

3. Использование негорючих (инертных) газов для заполнения свободного пространства аппаратов и передавливания горю­чих жидкостей.

4. Применение систем соединяющих между собой паровоздушные пространства различных емкостных аппаратов , позволяющих снизить концентрацию кислорода в паровоздушной смеси менее 16 % об., когда горение паров становится невоз­можным.

Аппараты с газами . Такие аппараты всегда находятся под избыточным давлением, поэтому поступление воздуха в них не­возможно, а, следовательно, невозможно и образование горючей среды.

Для предупреждения образования горючей среды внутри аппаратов с ГГ необходимо предусматривать следующие мероприятия и техни­ческие решения:

· поддерживать рабочую концентрацию горючего газа в смеси с окислителем за пределами области воспламенения, то есть ниже ниж­него и выше верхнего пределов распространения пламени;

· применять системы автоматической подачи негорючих (инертных) газов в объем аппаратов для разбавления (флегматизации) горючей сме­си.

· обеспечивать непрерывный автоматический контроль и сигнализацию об опасности со­держания в ГГ окислителя или же горючего га­за в окислителе.

· предусматривать системы автоматической блокировки, обес­печивающие прекращение подачи одного из компонентов горючей сме­си, а в некоторых случаях сразу двух компонентов, при опасных отк­лонениях концентрации от рабочих параметров.

В технологическом оборудовании с твердыми горючими вещества­ми и материалами горючая среда может образоваться при тепловом воздействии на них, в результате их самонагревания, при механической обработке до пылевидного состояния или получения волокон, порошка и т.п.

Сами твердые горючие вещества и материалы не способны образовывать в смеси с воздухом горючую среду. Если же их нагреть до некоторых критических температур, то может начаться процесс разло­жения с выделением летучих. Так, в процессе пиролиза древесины при температурах 150 — 275 о С происходит ее разложение менее с выделением окиси углерода, уксусной кис­лоты, метана, водорода и других газообразных веществ. Выделяющиеся продукты разложения в среде окислителя при определенных условиях могут образовывать горючую смесь. В таких случаях оценку возможности образования горючей среды в технологическом оборудовании производят, как и в случае с ЛВЖ, ГЖ или ГГ, по условию (2.1).

Основными мерами защиты от образования горючей среды в аппаратах с твердыми горючими вещества­ми и материалами, которые подвергаются тепловому воздействию или склонны к самонагреванию, являются:

· применение систем автоматического контроля за температурой материала и температурой в аппарате;

· применение систем автоматического регулирования темпера­туры в аппаратах;

· применение систем автоматического контроля концентра­ции горючих продуктов термического разложения в аппарате.

· применение систем автоматической подачи негорючих (инерт­ных) газов в объем аппаратов для разбавления го­рючей смеси.

Технологические аппараты с горючими пылями (порошками, волокнами) характеризуются значительной пожарной опасностью. При работе мельниц, дробилок, хлопковых разрыхлителей, центробежных классификаторов, систем пневмотранспорта образуется очень большое количество пыли. Пыль в таких аппаратах может находиться во взвешенном состоя­нии (аэрозоль) и в осевшем состоянии (аэрогель). В первом случае пожарная опасность пылей рассматривается как для газов и паров, во втором случае ― как для твердых веществ и материалов.

Повышенную опасность для технологического оборудования представляет осевшая пыль. Обладая развитой поверхностью контакта с окислителем, она в отложившемся состоянии может самовозгорать­ся, а при взвихрении образовывать горючую концентрацию. Это обс­тоятельство обуславливает характерную особенность циклического протекания пылевых взрывов. Сначала, как правило, происходит пер­вичный взрыв (вспышка) небольшой мощности в локальной зоне техно­логического оборудования. Образующаяся при этом взрывная волна приводит к взвихрению оставшейся пыли и образованию горючей пыле­воздушной смеси в значительно большем объеме. Происходит повтор­ный взрыв, который часто приводит к разрушению оборудования и об­разованию горючей концентрации уже в объеме производственного це­ха. Мощность последнего взрыва может оказаться достаточной для разру­шения всего здания, в котором размещается производство. Такое развитие событий характерно для аварийных ситуаций на зернофабриках, мукомольных заводах и элеваторах,

Для предупреждения образования горючей среды внутри техноло­гического оборудования с горючими пылями (порошками, волокнами) необходимо предусматривать следующие мероприятия и технические решения:

1. Применять, по возможности, менее пылящие технологические процессы (мокрые способы обработки, измельчение с увлажнением, вибрационный помол).

2. Использовать инертные газы или минеральные (неорганичес­кие) пыли для разбавления (флегматизации) пылевоздушного пространства аппара­тов.

3. Применять инертные газы для пневматической транспор­тировки

4. Оборудовать системы аспирации (местные отсосы) у пылящего технологического оборудования.

· Исключать возможность оседания горючей пыли на внутренних поверхностях аппаратов и трубопроводов.

5. Оборудовать аппараты и трубопроводы специальными лючками, обеспечивающими доступ для очистки внутренних поверхностей от отложений пыли.

В производственных помещениях и на открытых технологических площадках горючие паро-, газо- и пылевоздушные смеси образуются в двух случаях:

1. При выходе горючих веществ из нормально действующих технологических аппаратов, что, как правило, допускается технологическим регламентом.

2. При выходе горючих веществ из поврежденного по каким-либо причинам технологического оборудования (аварийная ситуация).

При нормальных режимах работы оборудования горючая среда на технологических участках может образовываться в том случае, если по условиям технологии применяются:

Аппараты с открытой поверхностью испарения (окрасочные ванны, ванны для пропитки изделий, ванны для промывки и обезжиривания деталей, закалочные ванны и т. п.). Горючая концентрация па­ров жидкости в смеси с воздухом над поверхностью таких аппаратов будет образовываться когда рабочая температура жидкости t р выше ее температуры вспышки:

(2.5)

Для предупреждения образования горючей среды при использова­нии аппаратов с открытой поверхностью испарения необходимо пре­дусматривать следующие мероприятия и технические решения:

· использовать по возможности закрытые (герметичные) аппараты;

· заменять ЛВЖ и ГЖ на пожаробезопасные жидкости и составы;

· поддерживать рабочую температуру горючей жидкости ниже температуры вспышки (с учетом коэффициента безопасности):

Последние записи

  • Что должен знать участник тендера
  • Должностная инструкция заместителя генерального директора по общим вопросам
  • Должностная инструкция секретаря учебной части колледжа
  • При каких заболеваниях дают инвалидность
  • Доля и распоряжение ею в общей долевой собственности
  • Отчетный период для бухгалтерской отчетности
  • Стандартизация бизнес-процессов в магазине
  • Новая отчётность по взносам
  • Оквэд банковской деятельности: правильный выбор обозначений для банков
  • Примеры расчета отпускных Дополнительный учебный отпуск

Что относится к источникам зажигания пылевоздушных газовоздушных

Отправляя данную форму, вы подтверждаете, что прочли и согласны со всеми пунктами Пользовательского соглашения и даёте согласие на обработку своих персональных данных в соответствии с Федеральным законом от 27.07.2006 года №152-ФЗ «О персональных данных», на условиях и для целей, определенных Политикой конфиденциальности.

Начать обучение
Полное название организации
Сокращенное название организации
Город организации
Контакнтый номер организации
Электронная почта организации
Количество обучающихся организации

  • Охрана труда
  • Пожарная безопасность
  • Комплексное обучение

Отправляя данную форму, вы подтверждаете, что прочли и согласны со всеми пунктами Пользовательского соглашения и даёте согласие на обработку своих персональных данных в соответствии с Федеральным законом от 27.07.2006 года №152-ФЗ «О персональных данных», на условиях и для целей, определенных Политикой конфиденциальности.

Записаться на услугу
Полное название организации
Сокращенное название организации
Город организации
Контакнтый номер организации
Электронная почта организации

  • Аутсорсинг
  • Разработка тематических стендов
  • Изготовление тематических стендов
  • Детская подготовка

Отправляя данную форму, вы подтверждаете, что прочли и согласны со всеми пунктами Пользовательского соглашения и даёте согласие на обработку своих персональных данных в соответствии с Федеральным законом от 27.07.2006 года №152-ФЗ «О персональных данных», на условиях и для целей, определенных Политикой конфиденциальности.

+7 (913) 361-72-17

ВЕРСИЯ ДЛЯ СЛАБОВИДЯЩИХ

  • Физика и химия пожара
  • Источники зажигания и горючая среда
  • Открытый огонь
  • Электрический ток
  • Огневые работы
  • Самовозгорание

ИСТОЧНИКИ ЗАЖИГАНИЯ И ГОРЮЧАЯ СРЕДА

Условно источники зажигания можно разделить на 4 вида:
1. открытый огонь в виде тлеющей сигареты, зажженной спички, конфорки газовой плиты или керосинового примуса (фонаря, лампы);
2. тепло электронагревательных приборов;
3. проявления аварийной работы электрических приборов и аппаратов, как отечественного, так и зарубежного производства;
4. искры от сварочных аппаратов и самовозгорание веществ и материалов.
Горючая среда представляет собой всю обстановку квартиры. Она может быть более или менее горючей в зависимости от содержимого этой среды. В пожарной охране существует понятие группы горючести веществ и материалов. По горючести все вещества и материалы подразделяются на 3 группы:
— негорючие — не способны к горению в воздухе, но тем не менее могут быть пожароопасными в виде окислителей или веществ, выделяющих горючие продукты при взаимодействии с водой (например, негорючий карбид кальция даже при контакте с влагой воздуха выделяет взрывоопасный газ ацетилен);
— трудногорючие — способны возгораться от источника зажигания, но самостоятельно не горят, когда этот источник удаляют;
— горючие — самовозгораются, а также возгораются от источника зажигания и продолжают гореть после его удаления.
Вот мы и определились с основными понятиями «источники зажигания» и «горючая среда». Остановимся более подробно на этих принципиальных для пожарной охраны понятиях и окончательно сформируем свое представление о развитии пожара.
Поскольку сейчас не каменный век, то смело можно утверждать, что вся квартира представляет собой одну огромную горючую среду. Ученые пожарной науки даже дали определение этой среде — «пожарная нагрузка», которая нормируется 50 кг на 1 м 2 , т.е. на каждый квадратный метр приходится 50 кг горючей среды. Отсюда делаются все остальные выкладки, огневые эксперименты, расчеты и, в конечном итоге, те требования, которые заносятся потом в стандарты, строительные нормы и правила, нормы технологического проектирования, правила пожарной безопасности и другие (и которые никто из нас, простых граждан, как правило, не читает).
Все горючие вещества и материалы имеют свою температуру воспламенения, которая колеблется от отрицательных (бензин, керосин, лаки, краски и т.п.) до положительных величин и не превышает для большинства твердых материалов 300°С. Другими словами, горящая спичка, тлеющая сигарета способны воспламенить любое горючее вещество.
Следующий вопрос — это поведение горючей среды при пожаре. В первые 10 минут от начала возгорания материала пламя распространяется линейно в разные его стороны (преимущественное направление вверх). Выделяется определенная температура, которая аккумулируется в помещении или в какой-то его части (преимущественно вверху). По мере возрастания температуры начинают возгораться другие вещества и материалы, попавшие в зону высокой температуры. Процессы возгорания горючих веществ и материалов происходят настолько хаотично, насколько хаотично мы расставили «горючую среду» в квартире. Соответственно и развитие пожара, его этапы могут отличаться по времени от приведенных во второй главе параметров.
Ни один пожар не похож на другой — в этом заключается вся сложность описания развития пожара. И никто не может сказать однозначно, что ждет нас в случае пожара в нашей квартире (если только не провести натурные испытания и не сжечь квартиру, фиксируя при этом необходимые параметры). Однако общая тенденция развития пожара очевидна — современная квартира может стать пылающим горном за считанные минуты.

656067, Алтайский край, г. Барнаул, ул. Балтийская, 66 Б

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *