Почему бетон нагревается при застывании
Перейти к содержимому

Почему бетон нагревается при застывании

  • автор:

Что обеспечивает надежность постройки — 9 свойств бетона

Особенности замешивания раствора определяют свойства бетона, которые должны соответствовать требованиям построек. Доступные возможности зависят от используемых компонентов и их пропорций. При сочетании веществ со схожими параметрами расширения конструкции получаются надежными и не подвергаются внутренним повреждениям. Важно обеспечить однородность и удобоукладываемость, строгое соблюдение других характеристик.

Свойства материала

Большое значение имеет однородность массы при транспортировке и применении для строительства. Удобство укладки позволяет получить необходимую форму без нарушения структуры смеси. При застывании бетона часть жидкости поднимается, но благодаря использованию пластифицирующих компонентов удерживается определенный объем воды и предотвращается расслоение бетонной массы на подвижных участках.

Усадка и набухание

На открытом воздухе бетонная конструкция застывает и постепенно оседает. В результате возникает усадочное напряжение, что может привести к образованию трещин. Чтобы снизить вероятность развития этих процессов при возведении массивных построек, формируют специальные швы, раствор замешивают с использованием заполнителей. Коэффициент усадки определяют до начала строительства, что позволяет заранее спланировать необходимые действия.

Прочность на сжатие

Из основных свойств бетона следует выделить прочность, измеряемую в мегапаскалях. Взаимодействие составляющих смеси приводит к повышению значений этого показателя. Особенности гидратации зависят от времени года и температуры воздуха. Заявленная производителем прочность проявляется через месяц после укладки материала.

На этапе приготовления раствора можно легко отрегулировать пористость и получить материал с необходимой объемной массой для конкретных целей.

Зимой из-за замерзания прочность снижается, для ее восстановления требуется прогревание. Чтобы этого избежать, строители предпочитают сразу добавлять компоненты, которые обеспечивают защиту от низких температур. При наличии оптимальных условий через неделю после применения бетона его прочность составляет около 70% от конечного результата. Чем выше температура воздуха, тем быстрее твердеет бетонная масса. При этом следует регулировать скорость процесса. Если она слишком высокая, снижается прочность и возникает необходимость в обработке паром или водой, защите, смоченной в воде, мешковиной или ПВХ-пленкой.

Деформативные свойства

При минимальных и краткосрочных нагрузках отмечается незначительная деформация бетона. Эта характеристика зависит от пружинистости, которая определяется количеством пор. Самый низкий уровень упругости характерен для ячеистого бетона. Более высокие значения показателя у бетонов с минимальным весом и большим количеством пор. Максимальной пружинистостью обладает тяжелый строительный материал.

Влагопоглощение и водонепроницаемость

Такие свойства бетона зависят от того, сколько в нем пор. Снижение этих показателей достигается путем применения компонентов, которые обладают уплотняющими и гидрофобизирующими характеристиками. В результате сокращения количества пор повышается устойчивость материала к воздействию влаги. Специальные вещества помогают уплотнить стройматериал, а значит, и снизить водопоглощение бетона.

Тепловыделение при твердении

Основные свойства бетона включают тепловыделение, максимальные значения которого характерны для глиноземистого материала. Вода и минералы взаимодействуют между собой, вследствие чего выделяется тепло. Бетон нагревается и при повышении температуры до 50 °C расширяется, в результате замедляется процесс усадки конструкции. На температурные показатели бетона влияют вид и расход цемента, другие факторы. Когда верхняя часть быстро остывает, а внутренняя остается горячей, вследствие неравномерного нагрева строительного материала повышается его температура и возникает расширяющее тепловое напряжение. В таких условиях возрастает риск нарушения прочности бетонных конструкций при растяжке. На выравнивание температуры может уйти больше месяца. В целях существенного снижения объема тепла в раствор добавляют мелко измельченные материалы.

Огнестойкость

Характеристики бетона определяют его устойчивость к воздействию негативных факторов, в том числе к огню. Цементно-строительные смеси огнеустойчивые. При существенном нагреве распадаются кристаллогидраты цемента, выделяется химически связанная жидкость, которая, испаряясь, помогает устранить практически все тепло. При этом интенсивный нагрев приводит к снижению прочности конструкции и значительному напряжению стройматериала.

Плотность и растекаемость

Ползучесть — процесс разрушения бетонной конструкции, протекающий при непрерывных статичных нагрузках. Значения показателя растекаемости зависят от компонентов и возраста бетона, уровня влажности и соблюдения других условий, необходимых для застывания смеси. Плотность определяется структурой раствора, увеличивается при равномерном распределении заполнителей и вибрационных манипуляциях в процессе применения бетона для конкретных целей.

При большом объеме пор и ускоренном высыхании ухудшается структура строительного материала, повышается растекаемость, что негативно сказывается на долговечности. Специалисты подсказывают, что снизить ползучесть помогают плотные заполнители.

Морозостойкость

Свойства бетона позволяют оценить все преимущества материала, одним из которых является морозоустойчивость. На показатель влияют наличие добавок и гигроскопичность. При пористости меньше 7% влагопоглощение минимальное, повышается устойчивость материала к низким температурам. В целях определения морозоустойчивости застывший материал попеременно замораживают и размораживают в воде.

Долговечность и другие свойства

Удобоукладываемость определяется объемом жидкости. Вода требуется для заполнителя и цементной массы. Чтобы материал был довольно прочным, следует строго соблюдать водоцементное соотношение. При необходимости увеличить объем воды требуется увеличить и количество цементного песка. Если используется мелкий цемент, перерасход составляет 15—25% от материала. Именно по этой причине мелкие пески используют только в качестве дополнительного компонента к смеси крупного песка и материалов с пластифицирующими свойствами.

Долговечность определяется числом пор и плотностью. Если пор мало и материал довольно плотный, конструкции служат десятки лет. На вязкость и однородность влияют заполнители и качество перемешивания. Компоненты бетона должны иметь схожие параметры. Устойчивость к воздействию химических веществ, другие свойства бетона зависят от многих факторов, потому следует производить комплексную оценку.

VIII Международная студенческая научная конференция Студенческий научный форум — 2016

ВЛИЯНИЕ ВЫСОКИХ ТЕМПЕРАТУР НА ПРОЧНОСТЬ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ (БЕТОН, ЖЕЛЕЗОБЕТОН, МЕТАЛЛ)

Изотова Д.Е. 1
1 Самарский государственный архитектурно-строительный университет
Работа в формате PDF

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Влияние высоких температур, как правило, затрагивает практически все механические свойства строительных материалов. В основном оно приводит к повышению пластичности и уменьшению их прочности. При значительном изменении температуры зачастую происходят сложные физико-механические процессы, в связи с этим сильно изменяются свойства. Например, пластичные материалы становятся хрупкими, и наоборот; изменениям подвергаются деформативные свойства и прочность. Также происходят изменения, приобретающие необратимый характер, то есть после восстановления нормальной температуры, к материалам не возвращаются первоначальные свойства.

Большую роль играет влияние высоких температур на такие строительные материалы как бетон, железобетон и металл, так как они являются наиболее распространенными и чаще всего используются в процессе строительства и производства оборудования по сравнению с другими материалами.

Как известно, щебень, цемент, вода и песок являются основными составляющими бетона. И необходимо, чтобы во время процесса бетонирования были соблюдены определенные условия, такие как нормальная температура и уровень влажности воздуха. При застывании бетонной смеси происходит процесс гидратации (присоединение молекул воды к ионам вещества), который является экзотермическим и происходит с выделением теплоты в большом количестве. В данном случае, при повышении температуры выше допустимой, начинается интенсивное испарение воды, в результате чего образуется большое количество незаполненных пор. Как следствие этого, снижается плотность бетона и происходит резкое ухудшение прочностных показателей. Воздействие высокой температуры при застывании, приводит к появлению у материала высокой прочности в течение первых нескольких суток, но затем ситуация изменятся в обратную сторону. Образцы, сформировавшиеся при нормальной температуре, все-таки, оказываются более прочными. В диапазоне более низких температур имеется оптимальное значение, при котором бетон достигает самой высокой прочности. Отметим тот факт, что бетон, который изготовили при оптимальной температуре 4,4° С, в течение месяца хранили при низкой температуре (—3,9° С), а затем при 23,9° С на протяжении трех месяцев является более прочным, чем такой же бетон, хранившийся при неизменной температуре 23,9° С. Но можно ослабить уровень негативного воздействия высоких температур в процессе схватывания бетона, применив в качестве добавки хлористый кальций. В целом, многолетний строительный опыт показывает, что бетон, укладываемый зимой, при правильном уходе, будет иметь более высокую прочность, чем аналогичный – укладываемый летом. Как подтверждение этого, отметим, что в тропических странах наблюдается тенденция более низкой его прочности. Таким образом, чем выше температура при схватывании бетона, тем ниже прочность.

Что касается воздействия высоких температур на готовые изделия из бетона, то здесь, также наблюдается негативное влияние. Прочность бетона снижается. Это заметно уже при нагреве до 200-300° C, свыше 300° C происходят изменения, приобретающие необратимый характер. Прочность уменьшается в 2 раза при нагреве до 400° C и в 3 раза – до 500° C. Увеличение деформативности и уменьшение модуля упругости бетона, также являются последствием воздействия высоких температур.

Стоит отметить, что конструкции многих зданий и сооружений подвергаются воздействию технологических температур. Плюс ко всему они должны обладать хорошей огнестойкостью. Поэтому все каменные и железобетонные конструкции, как правило, рассчитываются на огнестойкость и нагрев. Для изготовления конструкций, работающих в условиях высоких температур до 300º С, применяется бетон обычной или плотной структуры, свыше 300º С – жаростойкий бетон. При его нагреве до 60 — 100º С происходит снижение прочности при сжатии на 10-15% и на 25-30% при его растяжении. Это можно объяснить снижением прочности цементного камня и возникновением расклинивающего действия водных пленок в цементе. При нагреве бетона свыше 300º С происходит понижение его прочности в результате появления нарушений в структуре цементного камня и возникновения существенных напряжений из-за градиента температуры между внешними и внутренними слоями бетона. Что касается легкого бетона, то снижение его прочности происходит лишь при нагревании свыше 300º С, так как он нагревается гораздо медленнее из-за достаточного количества пор. Если его долгое время нагревать до температуры 200º С, то прочность бетона при сжатии может восстановиться, а если подвергать цикличному воздействию влажности окружающей среды и температуры, то плотность резко падает (на 30% после 50 циклов и на 50% после 200). Влажный бетон может хрупко разрушаться при сильном нагреве, например во время пожара.

Касаемо железобетона, ситуация обстоит немного иначе. Как известно, железобетонные конструкции состоят из бетона и арматуры, поэтому здесь имеет место комбинированное воздействие высоких температур, в результате которого возникают внутренние напряжения. Они вызваны различными коэффициентами деформации цементного камня, заполнителя и стальной арматуры. При постоянном воздействии на железобетон технологических температур, как было указано выше, происходит снижение прочности бетона. Как правило, он разрушается при длительном нагреве до 500-600º С и последующем охлаждении. Происходит снижение прочности сцепления арматуры периодического профиля с бетоном на 30%. Однако сцепление гладкой арматуры с бетоном резко уменьшается уже при 250º С. Под влиянием высоких температур происходит разрушение железобетонных балок, как следствие разрыва растянутой арматуры, нагретой до предельной температуры.

Наиболее подверженным воздействию высоких температур является металл. При нагревании в нем возрастает подвижность атомов, происходит обмен их местами, увеличение амплитуды колебаний и ослабление межатомных связей. Именно это влечет за собой изменения физико-механических и механических, прочности в частности, свойств металлов и сплавов.

Различные виды стали широко применяются для изготовления различных металлоконструкций уже с 80-х годов XX века, поэтому именно она заслуживает наибольшего внимания. Стальные конструкции обладают небольшой массой и высокой прочностью, отличаясь при этом незначительными габаритами. При воздействии высоких температур около 200-250° С, свойства стали практически остаются неизменными. Но уже при нагревании до 250-300° С происходит незначительное повышение прочности и снижение пластичности. При такой температуре сталь становится более хрупкой. В данном случае не рекомендуется подвергать её деформациям или оказывать ударное воздействие. В результате нагрева свыше 400°С происходит резкое падение предела текучести и временного сопротивления, а при дальнейшем повышении температуры до 600° С сталь теряет свою несущую способность, как следствие наступившей температурной пластичности. В данном случае при воздействии высоких температур с уменьшением толщины стенки происходит потеря прочности и переход из упругого состояния в упруго-пластичное.

Таким образом, при влиянии на металл значительных температур, падают пределы упругости, текучести, прочности и твердость, а сопротивление удару, удлинение и уменьшение поперечного сечения при разрыве растут. При повышении температуры происходит проявление способности металла к очень медленному, но непрерывному изменению размеров под действием слабых и постоянных по времени напряжений. Металл удлиняется, «ползет». Это явление называется «ползучесть». При постепенном удлинении металла появляются микропустоты и трещины с концентрацией напряжений вокруг них и, в конечном счете, происходит разрыв.

Ползучесть стали является практически одним из наиболее важных проявлений влияния высоких температур на сталь при длительной внешней нагрузке. Под действием постоянной по величине нагрузки нагретый металл начинает непрерывно деформироваться (ползти), причем величина напряжения, вызвавшего пластическую деформацию, может быть значительно ниже предела текучести, определенного при этой температуре. Практически считают, что, начиная с 400°, расчеты следует проводить, принимая во внимание ползучесть. Необходимо учитывать явление ползучести при выборе материала для изготовления различного рода конструкций, особенно для деталей турбин, авиационных двигателей, энергетических установок, которые работают при высоких температурах.

Таким образом, воздействие высоких температур практически на любой строительный материал приводит к отрицательным последствиям, в результате чего происходит потеря прочностных свойств и несущей способности. Для того чтобы оградить материалы от отрицательных температурных воздействий необходимо устраивать защитные слои из огнестойких материалов, либо использовать для изготовления конструкций и оборудования специальные особо прочные материалы, предназначенные для применения в высокотемпературных средах.

Бетон — до какой температуры можно заливать

Зима … Как говорится, «крестьянин торжествует…», строители — не очень… Практически в любом строительстве используется такое замечательное изобретение человечества, как бетон.
Прежде всего — разберемся, что же такое бетон.
«Как же, как же!», — скажете вы, — «Бетон — это смесь цемента, песка и гравия или щебня и воды! Он твердеет на воздухе! Проще простого!» Это не совсем так…
Согласно Википедии (R), «Бетон — искусственный каменный строительный материал, получаемый в результате формования и затвердевания рационально подобранной и уплотненной смеси состоящей из вяжущего вещества (цемент или др.), крупных и мелких заполнителей, воды. В ряде случаев может содержать специальные добавки, а также отсутствовать вода (например в асфальтобетоне).» (С)
Вот как! То есть, в бетоне может даже ОТСУТСТВОВАТЬ вода! Но такой бетон (асфальтобетон) мы рассматривать не будем, это тема дорожного строительства.
В данной статье опишем процессы, происходящие в нашем «стандартном» бетоне марок М100 … М300, при температуре воздуха от +5 °С и ниже, а также способы, позволяющие избежать ненужных расходов и «переделок» при бетонировании.

Согласно современным представлениям, образование и твердение цементного камня проходят через стадии формирования коагуляционной и кристаллических структур.
В стадии образования коагуляционной (связной) структуры вода, обволакивая мелкодисперсные частицы цемента, образует вокруг них так называемые сольватные оболочки, которыми частицы сцепляются друг с другом. По мере гидратации (связывания водой) частиц цемента процесс переходит в стадию кристаллизации. При этом в цементном тесте возникают мельчайшие кристаллы, превращающиеся затем в сплошную кристаллическую решетку. Этот процесс кристаллизации и определяет механизм твердения цементного камня и, следовательно, нарастания прочности бетона.
Ускорение или замедление процесса образования и твердения цементного камня зависит от температуры смеси и адсорбирующей способности цемента, определяемой его минералогическим составом.

Заливка бетона зимой

Для твердения цементного камня наиболее благоприятная температура от + 15 до +25°С, при которой бетон на 28-е сутки практически достигает стабильной прочности. При отрицательных температурах вода, содержащаяся в капиллярах и теле, замерзая, увеличивается в объеме примерно на 9%.
В результате микроскопических образований льда в бетоне возникают силы давления, нарушающие образовавшиеся структурные связи, которые в дальнейшем при твердении в нормальных температурных условиях уже не восстанавливаются. Кроме того, вода образует вокруг крупного заполнителя обволакивающую пленку, которая при оттаивании нарушает сцепление, т. е. монолитность бетона. При раннем замораживании по тем же причинам резко снижается сцепление бетона с арматурой, увеличивается пористость, что влечет за собой снижение его прочности, морозостойкости и водонепроницаемости.
При оттаивании замерзшая свободная вода вновь превращается в жидкость и процесс твердения бетона возобновляется. Однако из-за ранее нарушенной структуры конечная прочность такого бетона оказывается ниже прочности бетона, выдержанного в нормальных условиях, на 15…20%. Особенно вредно попеременное замораживание и оттаивание бетона.
Прочность, при которой замораживание бетона уже не может нарушить его структуру и повлиять на его конечную прочность, называют критической.
Таким образом, при бетонировании в зимних условиях технологическая задача в основном заключается в использовании таких методов ухода за бетоном, которые обеспечили бы достижение предусмотренных проектом конечных физико-механических характеристик (прочность, морозостойкость и др.) или критической прочности.
Критическая прочность для бетонов марок ниже М200 должна быть не менее 50% проектной и не ниже 5 МПа, для бетонов марок М200…М300 — не ниже 40%, для бетонов марок М400…М500 — не ниже 30%. Для предварительно напряженных конструкций прочность бетона к моменту замораживания не должна быть ниже 70% 28-суточной прочности.

Решению этой задачи должна быть подчинена технология всего цикла бетонирования, начиная от приготовления бетонной смеси и кончая выдерживанием бетона.

Заливка бетона зимой

Способ выдерживания уложенного в опалубку бетона выбираю с учетом создания необходимой для его твердения тепловлажностной среды. Это может быть обеспечено благодаря:

  • использованию эффекта экзотермического тепловыделения, возникающего в свежеуложенном бетоне в результате гидратации цемента;
  • внесению в бетон тепла внешними источниками тепловой энергии.

В зависимости от типа бетонируемой конструкции и требуемых сроков ввода ее в эксплуатацию, наличия источников энергии и других местных условий можно пользоваться следующими основными способами выдерживания бетона при отрицательных температурах:

  • бетонирование конструкций и выдерживание бетона в теплошатрах или других укрытиях, где создается тепловлажностный режим, необходимый для нормального твердения бетона (конвективный способ);
  • выдерживание бетона в утепленной опалубке с использованием эффекта экзотермии цемента (способ «термоса»);
  • выдерживание бетона с прогревом внешними источниками тепловой энергии (электропрогрев, контактные методы электропрогрева, индукционные и радиационные эффекты и др.);
  • выдерживание бетона с применением химических добавок, снижающих температуру замерзания воды и ускоряющих твердение бетона.

Указанные способы можно комбинировать. Необходимо учитывать, что при зимнем бетонировании ускорение процесса твердения зависит не только от выбранного способа выдерживания бетона, но и от ряда других технологических факторов, к которым относятся: применение высокоактивных цементов, вибрирования, позволяющего использовать более жесткие бетонные смеси, различного рода химических добавок; повышение качества заполнителей; более технологичные методы приготовления, перевозки и укладки бетонной смеси.

Если же кратко говорить об этих способах, то можно сказать так:

  • при использовании бетона без добавок его желательно заливать в утепленную опалубку или укрывать сверху и присыпать, например, опилками уже при температуре воздуха +1 … 0 °С;
  • при температуре 0… -7 °С обязательно использование химических добавок, и/или утепленной опалубки и укрытия («термос»), либо устройства над бетонной конструкцией тепляков с подогревом (например, тепловой пушкой), либо использование электроподогрева бетона (спец. трансформатором, подключенным к армированию);
  • при температуре от -7 °С и ниже необходимо либо заказывать предварительно разогретую (на РБУ) бетонну смесь (t °С — регламентируется СНиП), либо использовать более «сильные» химические добавки в комбинации с методами «термоса» и/или подогрева, либо использовать сухую (безводную) бетонную смесь и затворять ее горячей водой (60…80 °С в зависимости от применяемого в смеси вида цемента) непосредственно перед укладкой.

Дополнительно, хотя и редко (вследствие неудобства и дороговизны), при устройстве высотных и других сложных конструкций, применяют дополнительные методы подогрева:
— индукционный или электромагнитный (устройство трансформатора из изготавливаемой конструкции — вокруг прогреваемого железобетонного элемента устраивают обмотку-индуктор из изолированного провода и включают ее в сеть);

— инфракрасный обогрев (для прогрева монолитных заделов стыков сложной конфигурации, густоармированных стыков старого бетона с вновь укладываемым и других труднодоступных для прогрева мест);

— паровой прогрев острым паром (бри бетонировании высотных конструкций);

— метод форсированного предварительного электроразогрева (при сильных морозах (-40 °С и ниже) — бетонную смесь перед укладкой в опалубку в течение 5…15 мин интенсивно разогревают до 70…90°С в специальных бадьях, оснащенных электродами, или в кузовах автомобилей с помощью опускной гребенки электродов, сразу укладывают в неутепленную или малоутепленную опалубку и уплотняют до начала схватывания смеси).

Надеюсь, что материал этой статьи поможет вам правильно выбрать стратегию устройства бетонных конструкций при низких и «сверхнизких» температурах!

Схватывание и твердение бетона или цемента.

Многие знают, что цемент при взаимодействии с водой твердеет и превращается в так называемый цементный камень. Однако, немногие знают суть этого процесса: как твердеет, почему твердеет, что нам даёт осознание происходящей реакции и каким образом мы можем на неё воздействовать. На сегодняшний момент понимание всех стадий гидратации позволяет учёным изобретать новые добавки в бетон или цемент, так или иначе воздействующие на процессы, происходящие в период схватывания цемента и твердения бетонной или ЖБИ конструкции.

Заводы выпускающие ЖБИ или товарный бетон могут пользоваться этими добавками с огромной пользой для себя. Это и экономия электроэнергии и газа за счёт сокращения сроков пропаривания ЖБИ изделий, и снижение трудозатрат на вибрирование, и скорость оборачивания формоснастки или опалубки, и экономия цемента, и улучшение качественных характеристик товарного бетона и изделий ЖБИ. Всё это возможно за счёт применения специальных добавок для бетона или цемента. Перечень используемых на сегодняшний день добавок довольно велик, поэтому ему посвящён отдельный раздел добавки в бетон.

Вообще, в процессе набора прочности бетона присутствуют две основные стадии:

  • схватывание бетона довольно короткая стадия, происходящая в первые сутки жизни бетона. Время схватывания бетона или цементного раствора существенно зависит от температуры окружающего воздуха. При классической расчётной температуре 20 градусов начало схватывания цемента происходит примерно через 2 часа после затворения цементного раствора, а конец схватывания наступает примерно через три часа. То есть — процесс схватывания занимает всего 1 час. Однако, при температуре 0 градусов этот период растягивается до 15-20 часов. Чего говорить, если само начало схватывания цемента при 0 градусов начинается лишь спустя 6-10 часов после затворения бетонной смеси. При высоких температурах, например при пропаривании ЖБИ в специальных камерах мы ускоряем период схватывания бетона до 10-20 минут! В течение периода схватывания бетон или цементный раствор остаются подвижными, на них ещё можно воздействовать. Тут действует механизм тиксотропии. Пока Вы «шевелите» несхватившийся до конца бетон, он не переходит в стадию твердения, и процесс схватывания цемента растягивается. Именно поэтому доставка бетона на бетоносмесителях, сопровождающаяся постоянным перемешиванием бетонной смеси, способна сохранить её основные свойства. При желании прочтите подробности про основные свойства и состав бетона. Из личного опыта могу вспомнить экстраординарные случаи, когда наши миксера с бетоном стояли и «молотили» на объекте по 10-12 часов, в ожидании разгрузки. Бетон в такой ситуации не твердеет, но происходят некие необратимые процессы, существенно снижающие его качества в дальнейшем. Мы называем это свариванием бетона. Особенно критичны такие мероприятия летом в жару. Вспомните сокращённые сроки схватывания цемента при высокой температуре, о которых мы говорили выше. Менеджеры и диспетчера Компании BESTO стараются избегать подобных казусов, но иногда происходят непредвиденные ситуации, в основном связанные с обрушением некачественной опалубки. Бетон разливается, все бегают, пытаясь его собрать, восстанавливают опалубку, а время идёт, а ещё не разгрузившиеся бетоносмесители с бетоном стоят и молотят. Хорошо, если есть куда переадресовать, а если нет? Одним словом — беда.
  • твердение бетона это процесс наступает сразу после окончания схватывания цемента. Представьте, что мы при помощи бетононасоса наконец-то уложили бетон в опалубку, он благополучно схватился, и тут собственно и начинается процесс твердения бетона. Вообще, твердение бетона и набор прочности ЖБИ идёт не месяц, и не два, а годы. 28 суточный срок регламентирован лишь для того, чтобы гарантировать определённую марку бетона на тот или иной период. График набора прочности бетона или ЖБИ нелинеен и в первые дни и недели процесс происходит наиболее динамично. Почему же так? А вот как раз давайте разберёмся. Пришла пора поговорить про процесс гидратации цемента.

Минералогический состав и гидратация цемента

Мы не будем здесь разбирать сами стадии получения портландцемента, для этого есть специальный раздел, описывающий производство цемента более подробно. Нас интересует лишь состав цемента и его основные компоненты, вступающие в реакцию с водой при затворении цементного раствора или бетона. Итак. В качестве основы портландцемента рассматриваются четыре минерала, полученные в результате всех стадий производства цемента:

  • C3S трёхкальциевый силикат
  • C2S двухкальциевый силикат
  • C3A трёхкальциевый алюминат
  • C4AF четырёхкальциевый алюмоферит

Поведение каждого из них на разных стадиях схватывания бетона и его твердения, существенно отличается. Одни минералы вступают в реакцию с водой затворения сразу, другие немного погодя, а третьи — вообще не понятно зачем здесь «ошиваются». Давайте рассмотрим всех по порядку:

C3S трёхкальциевый силикат 3CaO x SiO2 минерал участвующий в процессе нарастания прочности цемента в течение всего времени. Без сомнения, он является главным звеном, хотя, в период первых суток жизни бетона у трёхкальциевого силиката есть серьёзный более шустрый соперник C3A, о котором мы упомянем позже. Процесс гидратации цемента является изотермическим, то есть — химическая реакция сопровождающаяся выделением тепла. Именно C3S «греет» раствор цемента при затворении, прекращает греть в период с начала затворения до момента начала схватывания, затем выброс тепла в течение всего периода схватывания и дальше происходит постепенное снижение температуры.

Трёхкальциевый силикат и его вклад в набор прочности бетона наиболее значим лишь в первый месяц жизни бетонной или ЖБИ конструкции. Это те самые 28 дней нормального твердения. Далее, его влияние на набор прочности цемента ощутимо уменьшается.

C2S двухкальциевый силикат 2CaO x Si02 начинает активно действовать лишь спустя месяц после затворения цемента в бетонной смеси, как будто принимая смену у своего трехкальциевого брата-силиката. В течение первого месяца жизни бетона или ЖБИ он в общем-то валяет дурака и ждёт своего часа. Это период безделья и расслабухи можно существенно сократить за счёт применения специальных добавок в цемент. Зато, его действие длится годами, в течении всего периода нарастания прочности железобетона, ЖБИ или бетона.

C3A трёхкальциевый алюминат 3CaO x Al2O3 наиболее активный из перечисленных. Он начинает кипучую деятельность с самого начала процесса схватывания. Именно ему мы обязаны за набор прочности, в течение первых дней жизни бетона или железобетона. В дальнейшем его роль в твердении и наборе прочности минимальна, но в скорости ему нет равных. Марафонцем его не назовёшь, а вот спринтером, пожалуй — да.

C4AF четрыёхкальциевый алюмоферит 4CaO x Al2O3 x Fe2O3 это как раз тот самый, который — «непонятно зачем вообще здесь ошивается». Его роль в наборе прочности и твердении минимальна. Незначительное воздействие на набор прочности отмечается лишь на самых поздних сроках твердения.

Все перечисленные компоненты при затворении водой вступают в химическую реакцию, благодаря которой происходит нарастание, сцепление и осаждение кристаллов гидратированных соединений. По сути, гидратацию можно назвать и кристаллизацией. Так наверное понятней.

Благодаря стараниям учёных и научным разработкам многочисленных испытательных лабораторий и НИИ стало возможным прогнозируемое и регулируемое воздействие на процесс гидратации цемента, влияние на начало и конец схватывания, регулируемая подвижность бетона, его прочность, коррозионная стойкость и так далее. В основном это делается за счёт применения специальных добавок в бетон. Спектр доступных методов воздействия на процесс схватывания цемента и дальнейшего набора прочности бетона или ЖБИ довольно широк и более подробно он описан в разделе добавки для бетона.

Компания БЭСТО поставляет товарный бетон и раствор, изготовленные с применением самых современных добавок, позволяющих получать бетонные смеси и цементные растворы с улучшенными показателями по морозостойкости, водонепроницаемости, подвижности и т.д. Современное дозирующее и бетоносмесительное оборудование помогает добиться наилучших результатов по однородности состава бетонной смеси или цементного раствора.

Надеюсь, что не загидратировал Вам мозги своими силикатами и алюминатами. С трёхкальциевым приветом, Эдуард Минаев.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *