Элемент пельтье как генератор электроэнергии
Перейти к содержимому

Элемент пельтье как генератор электроэнергии

  • автор:

Пельтье Термоэлектрический генератор SP1848-27145

Пельтье Термоэлектрический генератор SP1848-27145

Термоэлектрический генератор SP1848-27145 — это устройство на эффекте Пельтье — Зеебека для получения электричества, а чтобы охладить или нагреть что-либо можно подключить источник электроэнергии к выводам термоэлемента.

  • Максимальное напряжение: DC 4.8V
  • Максимальный ток: 669mA
  • Максимальная мощность: 3.4W
  • Вид модуля: однокаскадный
  • Рабочая температура: 150℃
  • Размеры модуля: 40 x 40 х 4мм

С этим товаром покупают:

Для получения электричества от термоэлектрического генератора SP1848-27145 необходимо одну сторону термоэлемента охладить, а другую нагреть. При разнице температур между холодной и горячей сторонами термоэлемента, возникает разница электрических потенциалов – появляется + и -. Чем больше разница этих температур, тем выше мощность термоэлектрического генератора.

Для увеличения выходного напряжения от термоэлектрического генератора SP1848-27145 его можно подключить к повышающему преобразователю напряжения

При протекании тока через термоэлектрический генератор, одна сторона будет нагреваться, другая сторона охладиться вплоть до минусовой температуры. Чем больше ток, тем выше разница температур, конечно в определенных пределах. При смене полярности питания, так же меняются местами горячая и холодная сторона.

  • работает всегда и везде где есть тепло и холод;
  • бесшумность, высокая надежность и долговечность;
  • отсутствие вибраций и подвижных, изнашиваемых частей;
  • возможность каскадного соединения — последовательно, параллельно.

Применение термоэлектрического генератора SP1848-27145:

Как правило, элементы Пельтье используют в основном, как генераторы холода, при проектировании мобильных холодильников, мини баров, кулеров для прохладительных напитков.

Если одну сторону термоэлектрического генератора нагревать, а другую сторону охлаждать — элемент начинает вырабатывать электричество. Например, для авторских электроизделий:

В качестве источника тепла можно использовать Солнце, горячую воду, свечку или костёр. Охлаждать термоэлектрический генератор можно холодной водой, льдом, снегом или холодным ветром.

Область применения теплогенератора, практически, ничем не ограничивается.

Тепловые электрогенераторы широко используются совместно с газовыми котлами и печками, геотермальными источниками, плитками для приготовления пищи, системами горячего водоснабжения и отопления, и просто с обычными кострами.

Имея у себя незаменимый и универсальный компактный термоэлектрический генератор, вы в любое время и в любом месте сможете зарядить Ваш телефон, смартфон, планшет, плеер, фотоаппарат или любые другие мобильные устройства.

С помощью термоэлектрического генератора SP1848-27145 можно добывать электричество в походах, путешествиях, экспедициях для обеспечения электропитания, освещения и зарядки различных устройств.

Термоэлектрический генератор SP1848-27145, незаменим для туристов – разведя костер, что бы обогреться или приготовить пищу, Вы сможете подзарядить аккумуляторы мобильных устройств и светодиодных фонарей!

Термоэлектрические генераторы помогут сэкономить Ваши расходы на сжигаемое топливо!

Обогревая помещение водогрейным котлом, Вы можете получить дополнительную электроэнергию практически бесплатно!

Легкий вес, малый размер, простота использования, делает термогенератор SP1848-27145 незаменимым и универсальным в экстремальных ситуациях.

Внимание, при использовании модуля SP1848 необходимо использовать радиатор, в противном случае он может выйти из строя от перегрева!

XI Международная студенческая научная конференция Студенческий научный форум — 2019

Элемент Пельтье, как генератор альтернативной электрической энергии

Капориков А.А. 1
1 Филиал МАГУ в г. Кировске
Работа в формате PDF

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Часто приходится снабжать удаленные объекты дорогой электроэнергией в виде дизельных и бензиновых генераторов, что достаточно затратно, поэтому возникает вопрос экономии, и возможные пути решения данного осложнения. Объектом исследования для решения этой проблемы был взят альтернативный источник генерация электроэнергии с помощью термоэлектрического преобразователя на основе элемента Пельтье (ЭП). Принцип действия, которого базируется на возникновении разности температур при протекании электрического тока. В основе работы ЭП (рис. 1) лежит контакт двух полупроводниковых материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. По мере поглощения этой энергии происходит охлаждение места контакта полупроводников. А во время протекании тока в обратном направлении происходит нагревание места контакта, дополнительно к обычному тепловому эффекту. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

Рис. 1 Строение элемента Пельтье

Достоинствами элемента Пельтье являются небольшие размеры, отсутствие шума, каких-либо движущихся частей, а также газов и жидкостей. При смене направления тока возможно, как охлаждение, так и нагревание — это даёт возможность термостатирования при температуре окружающей среды как выше, так и ниже установленного порога.

Недостатком ЭП является более низкий коэффициент полезного действия, чем у компрессорных холодильных установок на фреоне, что ведёт к большой потребляемой мощности для достижения заметной разности температур.

Основной проблемой в построении элементов Пельтье с высоким КПД является то, что свободные электроны в веществе являются одновременно переносчиками и электрического тока, и тепла. Материал же должен одновременно обладать двумя взаимоисключающими свойствами — хорошо проводить электрический ток, но плохо проводить тепло.

В батареях элементов Пельтье возможно достижение большей разницы температур, но мощность охлаждения будет ниже. Для стабилизации температуры лучше использовать импульсный источник питания, так как это позволит повысить эффективность системы. При этом желательно сглаживать пульсации тока – это увеличит эффективность работы ЭП и продлит срок его службы.

Т.к. работа элемента Пельтье основывается на разности температур, то одним из перспективных мест для применения будут являться регионы с холодным климатом. На данных местностях для комфортной жизнедеятельности человека, как правило, имеется система отопления помещений, а, следовательно, создается необходимая разность температур. Снаружи температура может опускаться ниже 20 градусов по Цельсию, но в помещение она должна оставаться комфортной для человека. Из этого положения можно извлечь выгоду, поместив на стыке разности температур элементы Пельтье. За счет этого можно значительно снизить энергозатраты в холодное время года, получая и при необходимости запасая электроэнергию.

Но элемент Пельтье не обязательно использовать в зонах с холодным климатом, его так же можно применить в областях с гидротермальными источниками, где стык температур будет появляться от горячей воды с одной стороны и охлаждающим радиатором, с другой стороны (рис.2). За счет этой разницы можно получить неплохой запас мощности, которую можно использовать, например, для питания оборудования, эксплуатируемого для изучения этих самых источников

Рис.2 Применения элемента Пельтье в геотермической зоне

Другим местом установки автономного генератора на основе элемента Пельтье, могут быть регионы с теплым или жарким климатом, где одна сторона будет повернута к источнику тепла, например, к Солнцу, а вторая помещена в землю, с естественным или принудительным охлаждением (рис.3). Одним из примеров такого расположение может являться погреб. Также эти элементы очень удобны во время походов, так как за их счет можно зарядить смартфон на энергии костра или запитать фонарик с помощью тепла организма.

Рис.3 Элемент Пельтье в погребе

Из выше перечисленных аргументов возникает вопрос внедрения автономных генераторов электрической энергии на основе элемента Пельтье точечно в выгодные области применения. Но на данный момент их производство не сильно развито из-за нехватки большого количества потребителей, и поэтому ЭП имеют большую стоимость. Средняя цена за 1 ячейку, стандартного размера 40 x 40 мм, составляет 80 рублей. Но как только данным генератором заинтересуется мировое сообщество, а именно выгодоприобретатели в качестве инвесторов, их производство начнет развиваться, а цена уменьшаться, и в дальнейшем появиться разнообразные размеры ячеек.

На сегодняшний день реализуемо и выгодно использовать данный элемент в качестве компактных и переносных генераторов малой мощности. Рассмотрим мобильные устройства на основе элементов Пельтье. А именно переносное зарядное устройство для телефона и других мобильных устройств. Чем больше будет перепад температур между телом человека и окружающей средой, тем выше будет эффективность ЭП и тем меньше понадобиться элементов-ячеек, но для максимально КПД необходим перепад температур в 100 градусов по Цельсию, а один стандартный элемент-ячейка при таких условиях вырабатывает 5 В и 2 Вт мощности на холостом ходе, но при нагрузке мощность и напряжение сокращаются вдвое, из-за низкого коэффициента полезного действия. Т.к. элементы Пельтье довольно компактные их можно встроить в неподвижные области штанов, куртки и обуви. В итоге одна сторона будет нагреваться от тепла, вырабатываемым человеком, другая охлаждаться от окружающей среды. А для зарядки смартфона необходимо не менее 12 В, т.е. около шести элементов Пельтье. Средняя цена на элемент Пельтье составляет 100 рублей, итоговая стоимость составит 600 рублей, это дешевле обычных переносных зарядных устройств, которые ещё нужно зарядить перед использованием.

Следующим примером, который несложно реализуем, является установка для источника энергии в походе, как зимой, так и летом, от которой можно заряжать различные маломощные потребители, такие как телефоны, фонарики, холодильники на элементе Пельтье, а также запасать электроэнергию в аккумуляторы. Если вырабатывать энергию летом, то эффективным временным промежутком является ночное время суток, т.к. температура опускается до 10-15 градусов, от этого будет питаться сторона с меньшей температурой, а другая нагреваться от костра, который необходим для обогрева экспедиции. Другой, и более эффективный вариант, это использование данного генератора в зимний период, т.к. возможная разница температур будет существенно больше. Одна часть будет соприкасаться с костром, другая с емкостью для снега, к которой прикрепляются радиаторы с вентиляторами. Чтобы выработать мощность в 24 Вт, потребуется около 12 ЭП, кулер на 5,4 Вт, 2 алюминиевых радиатора, термопаста, умножитель напряжения, если потребуется запитать потребители с большим напряжением напряжению, и сама печка из нержавеющей стали. Экономически расчет показывает выгодность данного походного устройства, 12 элементов Пельтье за 1200 рублей (при оптовой закупке будет дешевле), кулер – 800 рублей, термопаста 600 рублей, 2 алюминиевых радиатора по 300 рублей, а для умножителя напряжения потребуется 4 диода и 4 конденсатора общей стоимостью 300 рублей. Итого 3500 рублей за походный автономный источник электроэнергии на элементах Пельтье. (рис.5). Он не занимает много места, поэтому очень удобен в походах и экспедициях. Если одного генератора будет недостаточно, есть два пути решения: — добавить ещё один генератор; — улучшить схему умножителя напряжения посредством добавления диодов и конденсаторов.

Рис. 4 Переносной генератор Пельтье

Но одним из самых эффективных и логических способов использования ЭП, является внедрение его в удаленные метеостанции, которые расположены по всему земному шару. Будь это холодный климат, где данный генератор будет намного эффективнее, либо же в областях, где температура окружающей среды не опускается ниже 15 градусов по Цельсию. Один из примеров такого использования будут являться метеостанции и другие объекты, находящиеся в Арктической зоне. Т.к. в наши дни значение Арктики многократно возрастает. Она становится местом самого пристального внимания стран и народов в качестве региона, от самочувствия которого во многом зависит климат планеты, и в качестве сокровищницы уникальной природы, и, как территория с колоссальными экономическими возможностями, с огромным экономическим потенциалом.

Экономическая часть

Объектом исследования была выбрана метеостанция в Арктической зоне.

Для наблюдения за изменениями климата исследователю (человеку) необходимо жильё с комфортными условиями жизни, а именно: отопление и электричество. Необходимая мощность 12 кВт, включающая в себя:

Персональные компьютеры для обработки данных, полученных в результате наблюдения — 800Вт

Холодильник 200 Вт

Прожектор для ночного освещения — 300 Вт

Микроволновая печь СВЧ — 1500 Вт

Обогреватель — 1500 Вт

Электрочайник — 1500 Вт

Стиральная машина — 3000 Вт

Электроплита (2 конфорки) — 4000 Вт

Для обеспечения энергией понадобится бензиновые генератор Robin-Subaru (Россия) EB 12.0/230-SLE. Его цена составляет 213 тысяч рублей.

Производитель: Robin-Subaru ( Россия);

Мощность: 12 кВт\12кВА;

Напряжение: 230 В;

Коэффициент мощности: 1 (сos φ);

Коэффициент фаз: 1;

Вид топлива: бензин;

Расход топлива при нагрузке 75%: 3,8 литра;

Ёмкость топливного бака: 26 литров;

Уровень шума: 74 Дб;

Преимущества генератора Robin-Subaru:

Низкая цепа (в сравнении с другими генераторами мощностью 12 кВт).

Расход генератора в час будет составлять 169,1 рубль (при нынешней цене на бензин 44,50 р за литр). Учитывая, что генератор расходует полный бак за день, можно сделать вывод , что затраты на день составят 1157 рублей.

При установке элементов Пельтье на такую же мощность, нам понадобится 6000 штук, которые будут стоить около 550000 рублей (цена указана при поштучной покупке, оптом будет дешевле). Элементы Пельтье не требуют дополнительных расходов для производства энергии, они экологичны и бесшумны. Период самоокупаемости начнётся меньше чем через год, т.к. заправлять генератор необходимо каждый день, в течении года необходимо затратить 420 тысяч, это без учёта цены на доставку бензина. И в итоге за год с генератором расход составит 633 тысячи, при элементах Пельтье 650 тысяч.

Сложностью электроснабжения объектов в Арктической зоне является отсутствие традиционных источников электрической энергии, поэтому на данный момент их замещают с помощью мобильных генераторов и электростанций, побочным эффектом которых является дорогая стоимость электроэнергии.

Рис.5 Установка ЭП в зонах Арктики и Крайнего Севера

Этот недостаток можно значительно уменьшить за счет внедрения автономных генераторов Пельтье, которые будут устанавливаться на стыке температур, в данном случае это будут стены сооружений, снаружи которых будет значительно ниже 0 градусов по Цельсию, а внутри значительно выше 0. А полученную электроэнергию для стабилизации запасать в аккумуляторные батареи (рис.4).

Таким образом, на данный момент использование элемента Пельтье экономически целесообразно только в условиях, где можно получить большой перепад температур, не приводя к дополнительным расходам. В таких зонах как Арктики, Антарктики и регионы Крайнего Севера. Либо в качестве мобильного маломощного электрогенератора, когда нужно получить электрическую энергию, не затратив на это больших ресурсов, и не имея громоздких конструкций.

Список литературы:

Арктика и Антарктика. Вып. 3 (37) / РАН, Науч. совет по изучению Арктики и Антарктики : отв. ред. В. М. Котляков. — М. : Наука, 2004. — 247 с.

Физика твердого тела Учеб. пос. / А. А. Василевский – М.: Дрофа, 2010. – 206 с.

Теория твердого тела / О.Г. Медалунг. – М.: Наука, 1980. – 418 с.

Элемент пельтье как генератор электроэнергии

Генератор на дровах своими руками!

Для любителей скоротать вечерок руками — самое то!

Плюсы этого генератора:

— Топливо – всё что горит или греет.
— Выход USB 5 Вольт, 500mA.
— Не зависит от солнца, ветра и т.д.
— Простая и крепкая конструкция, которая может служить вечно.
— Можно готовить на нем еду, пока ваш телефон заряжается.
— Универсальность.
— Может собрать любой у себя дома за 1 вечер (даже работник АвтоВАЗа=)).
— Дешевизна конструкции.

Изобрел не я, есть коммерческие экземпляры, которые на много лучше моего. Например, BioLite CampStove, его цена 7900 руб. Мой экземпляр сделан на скорую руку для написания этой статьи и дальнейших экспериментов.

Основой является элемент Пельтье. Это термоэлектрический модуль, используемый в кулерах для воды и переносных холодильниках, так же его применяют для охлаждения процессора. При подаче на него напряжения, одна сторона охлаждается, а другая нагревается. Мы же наоборот будем греть одну сторону, чтобы получить электричество.

Главный принцип в том чтобы одна сторона нагревалась, а другая оставалась неизменной, для максимальной эффективности нужен перепад температур в 100 градусов по Цельсию.

Нам понадобится:

Я использовал TEC1-12710, его характеристики:

— Не нужный блок питания от компа
Любой, даже тот, который сгорел, и выгорело всё кроме корпуса
— Стабилизатор напряжения
DC-DC Boost Module, Входное напряжение 1-5 Вольт, на выходе всегда 5В.
— Радиатор (чем больше, тем лучше), желательно с кулером на 5В, т.к. радиатор будет постепенно нагреваться. Зимой это не грозит, так как можно поставить радиатор на лед.
— Термопаста
— Набор инструментов

Основные элементы — это модуль Пельтье и преобразователь. С их характеристиками можете поэкспериментировать.

Модуль TEC1-12710, рассчитан на 10 А (есть меньше, есть больше). Но более мощные будут большего размера. Чем больше сила тока, тем он эффективней и дороже. Я купил на Dx.com примерно за 250 руб. У нас в магазинах электроники такой стоит около 1500 руб.

Модуль рассчитан на максимальное напряжение 12В, но столько он не выдает из-за низкого КПД, когда мы используем его в обратном направлении, т.е. на получение тока.

Для того чтобы было стабильно 5 вольт и устройства заряжались безопасно, нужен повышающий стабилизатор. Он начинает выдавать 5 Вольт, когда на элементе Пельтье еще только 1. О том, что всё готово к зарядке, можно узнать по горящему светодиоду на модуле.

Можете собрать свой, я же решил довериться китайцам, они предлагают готовый модуль с USB выходом, за 80 руб. на том же сайте.

Распотрошим наш блок питания. Мне пришлось сделать дополнительные дырки для лучшей циркуляции воздуха (блок питания попался очень уж древний).

Главный принцип в том, чтобы воздух засасывало снизу, и выходил он через верх. Проще говоря, нужно сделать обычную печку. Не забудьте предусмотреть отверстие для подкидывания щепок и подставку под котелок или кружку для кипячения воды, если вам это нужно.

Далее к ровной стенке нужно прикрепить модуль Пельтье с радиатором, предварительно равномерно нанеся термопасту. Чем плотнее контакт, тем лучше. Та сторона, где написана модель – холодная, именно к ней мы прикладываем радиатор. Если вы перепутали, модуль не будет выдавать напряжение, в этом случае нужно просто поменять провода местами.

Припаиваем повышающий преобразователь, и находим, куда его спрятать. Можно вообще оставить его висеть на проводах, но обязательно нужно заизолировать, например, одеть на него термоусадку.

Собираем всё вместе. Вот что должно получиться:

Как это работает?

Закидываем внутрь ветки, щепки, в общем, всё то, что горит. Затем разжигаем. Огонь нагревает стенки печки и элемент Пельтье, который на одной из этих стенок. Другая сторона элемента, которая на радиаторе, остается при уличной температуре. Чем больше разница температур, тем больше мощность, но не переборщите.

Максимальная эффективность достигается уже при разнице в 100 градусов. Со временем радиатор начинает нагреваться, и его нужно будет охлаждать. Можно подбрасывать снег, поливать водой, поставить радиатором на лед или в воду, поставить на него кружку с холодной водой. Вариантов много, самый простой это кулер, он будет забирать часть мощности, но за счет охлаждения общий результат не измениться.

НЕ допускайте воздействие больших температур на элемент, он может перегореть и сгореть. В документации указана максимальная температура 180 °С, но особо беспокоится не стоит, с хорошим охлаждением и на простых дровах ничего с ним не будет.

Если вы не будете ленится и всё правильно сделаете, то получите вот такую простую щепочницу на которой можно подогревать еду, кипятить, воду и одновременно заряжать свои гаджеты.

Её можно использовать дома, если отключили электричество, поставив внутрь свечку. Кстати если подключить к ней светодиоды, но свет будет на много ярче чем от самой свечки.

В любом месте где можно найти что-то горящее, у вас будет электричество, тепло и возможность удобно готовить еду, расходуя меньше горючего по сравнению с костром.

Пошел после работы в лес, солнце почти село, хворост мокрый, но печь оправдала себя на 100%.

Результат превзошёл все мои ожидания. Сразу после разгорания щепок, загорелся индикатор, я подключи телефон и он начал заряжаться. Зарядка шла стабильно.

Преобразователь вообще не напрягался. Еще я брал с собой охлаждающую подставку для ноутбука, на ней 2 кулера и светодиоды, должно прилично потреблять. Подключил, всё крутится, светится, ветерок дует. Брал еще USB вентилятор, подключил в конце, когда остались одни угли. Всё отлично крутится, даже не знаю что еще можно попробовать.

Всё прекрасно работает выдает свои пол Ампера. Все таки нужен кулер, т.к. за пол часа радиатор нагрелся порядка 40 градусов, летом это будет еще больше. Пускай крутиться себе.
Языки пламени вырываются высоко вверх, мне лично такого костра не надо, буду закрывать часть отверстий, чтобы горело медленней.

Буду делать все по новой, возьму за основу стандартную щепочницу которую делают из консервных банок, но сделаю из метала потолще и прямоугольной формы. Куплю хороший радиатор с кулером подходящей формы и постараюсь сделать разборный вариант, чтобы при переноске занимало меньше места.

Александр

Эксперимент по постройке термоэлектрического генератора на основе элементов Пельтье

Здравствуйте, меня зовут Данил, и я параноик. Паранойя моя заключается в том, что я убежден в неминуемом приходе Большого Песца. В каком обличье этот самый песец придет, не важно – если останемся в живых, то, скорее всего, придется начинать жить с нуля. А жить гораздо веселее, когда у тебя есть, от чего зарядить аккумуляторы в фонарике и дозиметре. Тех, кто считает так же (а также и всех любопытствующих), прошу под кат (осторожно, тяжелые фотки).

Исследовательская часть

Собственно, почему элемент Пельтье? Гораздо логичнее приобрести фонарик с мышечным приводом («жужелицу»), солнечными батареями, или, на худой конец, построить ветряк. Раньше я тоже думал, что вполне можно обойтись «жужелицей». Но в ней очень много движущихся деталей, которые сделаны дядюшкой Ляо из дешевого пластика. Первая поломка в условиях Большого Песца – и ты остаешься без электричества.

Хорошо, спросите вы, почему не солнечные батареи? Там нет движущихся частей. Согласен, отвечу я, но в условиях ядерной или вулканической зимы или под двухметровым бетонным перекрытием убежища солнышко не так-то легко поймать.

Ветряк? А какой площади должны быть его лопасти для того, чтобы он мог крутиться даже от слабого ветра? Движущиеся детали, опять же. Ветряк годится для стационарной установки при оборудовании долговременного укрытия.

Обмозговав эти доводы, я приуныл. Но вскоре случайно наткнулся на сайт nepropadu.ru (никакой рекламы, исключительно ссылка на исходный материал). Я просидел на нем безвылазно двое суток, и в процессе наткнулся на прелюбопытную статью про печку-щепочницу из корпуса от компьютерного БП с элементом Пельтье на боку (ссылка в конце поста). В комментариях было много скептики, но автор писал, что спокойно заряжал телефон от подключенного китайского DC-DC преобразователя… Я загорелся.

Конструкторская часть

Для начала я заказал у китайцев на e-Bay такой же элемент Пельтье (на эксперименты хватит). Обошелся он мне в 320 рублей. Что порадовало, так это ускоренная, с отслеживанием, но бесплатная доставка. Плюс товар отправили буквально через час после оплаты (а дело было в воскресенье).

Пока элемент Пельтье ехал, я продумал конструкцию будущего термоэлектрического генератора, нашел подходящий радиатор с вентилятором (прекрасно подошел древний процессорный радиатор), а также откопал на просторах Интернета схему DC-DC преобразователя с максимальным выходным током 1 ампер при напряжении 5 вольт.

Делать печку-щепочницу по примеру из той статьи я посчитал не целесообразным. Металл, из которого делают компьютерное железо, очень мягкий, от воздействия высоких температур его «поведет», да и прогорит он быстро. Поэтому было решено сделать «съемный вариант» генератора, который можно было бы закрепить на боку стационарной печки или прислонить к стоящему на костре котелку. А чтобы в таких условиях не поджарить элемент Пельтье на открытом огне, нужна была термостойкая, но теплопроводящая прокладка. Для этого мне удалось раздобыть кусок толстой алюминиевой пластины размерами 100х120х5 миллиметров.

Чтобы прижать элемент Пельтье к алюминиевой подложке, а к нему, в свою очередь, прижать радиатор, я решил использовать детский металлический конструктор, который я когда-то покупал для нужд робототехники.

Но вот элемент Пельтье приехал, и настало время для сборки.

Технологическая часть

У нас был радиатор, алюминиевая пластина, элемент Пельтье, горстка радиодеталей, кусок фольгированного текстолита и самые разные винтики и гайки. Дальше не помню.

Итак, все компоненты собраны, можно приступать к сборке.

Прошу прощения за размеченную и просверленную в двух местах пластину – до меня только после дошло, что неплохо бы фотографировать весь процесс сборки с самого начала.

Первая неприятность, которая меня подстерегала – это 12-вольтовый штатный вентилятор на радиаторе. Так как я собираюсь добывать всего 5 вольт, да еще и при довольно небольшом максимальном токе, то это могло создать проблему.

Сначала я закинул удочки во все радио- и компьютерные магазины Перми, однако нигде не нашлось вентилятора 80х80 миллиметров на 5 вольт. А если и были, то меньших размеров и на ток более 200 мА, что было слишком много.

Затем я покопался на Ибее и обнаружил, что нужный мне вентилятор стоит от 300 рублей. Но надеяться на скорую доставку было бессмысленно, и поэтому я оставил этот вариант как резервный.

И только после всех поисков я догадался включить штатный 12-вольтовый вентилятор к 5-вольтовому источнику напряжения. Оказалось, что он вполне неплохо дует, и при этом потребляет не очень большой ток. Поэтому я решил пока оставить его, а после проведения испытаний при необходимости заказать вентилятор на Ибее.

Я разметил алюминиевую пластину и просверлил в ней два отверстия для крепления радиатора и два – для платы преобразователя напряжения. Отверстия я сделал диаметром 4 миллиметра (под винты из конструктора), а с внешней стороны расширил их до 7,5 миллиметров, чтобы скрыть шляпки винтов. После этого я скруглил напильником острые углы и прошелся крупной наждачкой по всем поверхностям пластины, и мелкой – по месту прижатия элемента Пельтье.

На этом обработку подложки я посчитал завершенной и приступил к изготовлению преобразователя напряжения.
Импульсный повышающий преобразователь напряжения собран на ИМС L6920, которая начинает работать при входном напряжении 0,8 вольт и позволяет снять со своего выхода фиксированное напряжение 3,3 или 5 вольт, или изменяемое от 1,8 до 5,5 вольт.

Принципиальная схема преобразователя является типовой и взята из даташита.

Для получения 5 вольт на выходе схемы ножка 1 соединена с общим проводом. Также настроена выдача низкого уровня на ножке 3 при падении входного напряжения ниже 1,5 вольт.

Для схемы была разведена печатная плата, на которой предусмотрено крепление к основанию-подложке с помощью все тех же деталей от детского конструктора. За перегрев платы я не беспокоюсь, так как она имеет принудительное охлаждение потоком воздуха, выдуваемым из радиатора.

Пришлось повозиться с макросом корпуса, в котором была купленная мной микросхема. На сайте магазина значилось, что она в корпусе SSOP-8. Как оказалось, в стандартном наборе макросов Sprint Layout нет такого корпуса. Я нашел чертеж корпуса SSOP-8 и сделал макрос, после чего развел плату. После пробной печати выяснилось, что микросхема несколько шире, и на свои контактные площадки не помещается. Гугление конкретной модели микросхемы (L6920D) привело меня на сайт Чип-Дипа, где я узнал, что ИМС с индексом D изготавливается в корпусе TSSOP-8. Почесав затылок, я нашел чертеж этого корпуса, создал макрос и переразвел плату. Теперь все оказалось правильно.

Плата изготовлена при помощи ЛУТа и собрана. Оказалось, что корпус TSSOP-8 паять без фена очень неудобно. Но мы люди тертые, FTDI-микросхемы с шагом ножек 0,4 миллиметра паяли.

Теперь можно заняться установкой элемента Пельтье и радиатора. Подложку и радиатор в местах контакта с элементом я намазал термопастой. Затем стянул получившийся «бутерброд» гайками.

Оказалось, что плата преобразователя не влезает, упирается входным разъемом в радиатор, слегка не рассчитал. Перевернул крепежные скобы, плату вывесил наружу, а для защиты элементов от механических повреждений добавил еще две скобы. Вот что в итоге получилось:

Теперь можно проверить работоспособность генератора. Я нагревал его на газовой горелке. Вентилятор решил пока не ставить.

Для начала оказалось, что я перепутал полярность подключения элемента к преобразователю. Хотя вроде бы все было правильно – черный провод – к минусу, красный – к плюсу. Однако работать генератор не хотел. Тогда я изменил полярность подключения элемента.

Генератор заработал – сначала загорелись оба светодиода, сигнализируя о наличии 5 вольт на выходе и низком напряжении на входе, затем красный светодиод погас – напряжение поднялось выше полутора вольт.

К моему неудовольствию оказалось, что без вентилятора через пару минут работы системы радиатор ощутимо нагрелся. Так дело не пойдет.

На следующий день я прогулялся по металлорынку и нескольким компьютерным барахолкам, но на мой вопрос о 5-вольтовых вентиляторах везде разводили руками и советовали сходить «еще вон в то место», в котором я уже был пару минут назад. В итоге я поехал домой не солоно хлебавши.

Дома я провел эксперимент по запитке штатного 12-вольтового вентилятора от выходных 5 вольт преобразователя. Результаты меня не порадовали – преобразователь с явной неохотой погасил красный светодиод, а вентилятор несколько секунд слабо подергивался, пытаясь запуститься. Воздушного потока от работающего в полсилы вентилятора оказалось недостаточно для нормального охлаждения – радиатор так же быстро нагрелся, хоть и не обжигал теперь пальцы. В итоге вентилятор я решил все же заказать с Ибея.

Результат

Несмотря на низкий КПД элемента Пельтье в режиме генерации, промежуточный результат я все же получил – при подключении к выходу преобразователя портативного аккумулятора с заявленным током заряда 1000 мА генератор смог дать ток около 600 мА. Думаю, для зарядки большинства гаджетов в условиях Большого Песца этого тока вполне хватит.

По приезду вентилятора (Ибей обещает середину марта-начало апреля) проверю охлаждение. Плюс нужно будет протестировать работу генератора в «боевых» условиях – на костре.

За качество фотографий извиняюсь — фотограф из меня никакой. Ссылка на вдохновившую меня статью: тыц.

  • выживание в экстремальных условиях
  • выживание в природе
  • очумелые ручки

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *