Что собой представляет резина по химическому составу
Перейти к содержимому

Что собой представляет резина по химическому составу

  • автор:

Что собой представляет резина по химическому составу

РЕЗИНА (от лат. resina-смола) (вулканизат), эластичный материал, образующийся в результате вулканизации нату рального и синтетических каучуков. Представляет собой сетчатый эластомер-продукт поперечного сшивания молекул каучуков хим. связями.

Получение. Резину получают гл. обр. вулканизацией композиций (резиновых смесей), основу к-рых (обычно 20-60% по массе) составляют каучуки. Др. компоненты резиновых смесей-вулканизующие агенты, ускорители и активаторы вулканизации (см. Вулканизация), наполнители, противо-старители, пластификаторы (мягчители). В состав смесей могут также входить регенерат (пластичный продукт регенерации резины, способный к повторной вулканизации), замедлители подвулканизации, модификаторы, красители, порообра-зователи, антипирены, душистые в-ва и др. ингредиенты, общее число к-рых может достигать 20 и более. Выбор каучука и состава резиновой смеси определяется назначением, условиями эксплуатации и техн. требованиями к изделию, технологией произ-ва, экономич. и др. соображениями (см. Каучук натуральный, Каучуки синтетические).

Технология произ-ва изделий из резины включает смешение каучука с ингредиентами в смесителях или на вальцах, изготовление полуфабрикатов (шприцеванных профилей, каландрованных листов, прорезиненных тканей, корда и т.п.), резку и раскрой полуфабрикатов, сборку заготовок изделия сложной конструкции или конфигурации с применением спец. сборочного оборудования и вулканизацию изделий в аппаратах периодич. (прессы, котлы, автоклавы, форматоры-вулканизаторы и др.) или непрерывного действия (тоннельные, барабанные и др. вулканизаторы). При этом используется высокая пластичность резиновых смесей, благодаря к-рой им придается форма будущего изделия, закрепляемая в результате вулканизации. Широко применяют формование в вулканизац. прессе и литье под давлением, при к-рых формование и вулканизацию изделий совмещают в одной операции. Перспективны использование порошкообразных каучуков и композиций и получение литьевых резин методами жидкого формования из композиций на основе жидких каучуков. При вулканизации смесей, содержащих 30-50% по массе S в расчете на каучук, получают эбониты.

Свойства. Резину можно рассматривать как сшитую коллоидную систему, в к-рой каучук составляет дисперсионную среду, а наполнители-дисперсную фазу. Важнейшее св-во резины- высокая эластичность, т. е. способность к большим обратимым деформациям в широком интервале т-р (см. Высокоэластическое состояние).

Р езина сочетает в себе св-ва твердых тел (упругость, стабильность формы), жидкостей (аморфность, высокая деформируемость при малом объемном сжатии) и газов (повышение упругости вулканизац. сеток с ростом т-ры, энтропийная природа упругости).

Р езина-сравнительно мягкий, практически несжимаемый материал. Комплекс ее св-в определяется в первую очередь типом каучука (см. табл. 1); cв-вa могут существенно изме няться при комбинировании каучуков разл. типов или их модификации.

Модуль упругости резин разл. типов при малых деформациях составляет 1-10 МПа, что на 4-5 порядков ниже, чем для стали; коэф. Пауссона близок к 0,5. Упругие св-ва резины нелинейны и носят резко выраженный релаксац. характер: зависят от режима нагружения, величины, времени, скорости (или частоты), повторности деформаций и т-ры. Деформация обратимого растяжения резины может достигать 500-1000%.

Ниж. предел температурного диапазона высокоэластичности резины обусловлен гл. обр. т-рой стеклования каучуков, а для кристаллизующихся каучуков зависит также от т-ры и скорости кристаллизации. Верх. температурный предел эксплуатации резины связан с термич. стойкостью каучуков и поперечных хим. связей, образующихся при вулканизации. Ненаполненные резины на основе некристаллизующихся каучуков имеют низкую прочность. Применение активных наполнителей (высокодисперсных саж, SiO 2 и др.) позволяет на порядок повысить прочностные характеристики резины и достичь уровня показателей резин из кристаллизующихся каучуков. Твердость резины определяется содержанием в ней наполнителей и пластификаторов, а также степенью вулканизации. Плотность резины рассчитывают как средневзвешенное по объему значение плотностей отдельных компонентов. Аналогичным образом м. б. приближенно вычислены (при объемном наполнении менее 30%) теплофиз. характеристики резин: коэф. термич. расширения, уд. объемная теплоемкость, коэф. теплопроводности. Циклич. деформирование резины сопровождается упругим гистерезисом, что обусловливает их хорошие амортизац. св-ва. Резины характеризуются также высокими фрикционными св-вами, износостойкостью, сопротивлением раздиру и утомлению, тепло- и звукоизоляц. св-вами. Они диамагнетики и хорошие диэлектрики, хотя м. б. получены токопроводящие и магнитные резины.

Р езины незначительно поглощают воду и ограниченно набу-хают в орг. р-рителях. Степень набухания определяется разницей параметров р-римости каучука и р-рителя (тем меньше, чем выше эта разность) и степенью поперечного сшивания (величину равновесного набухания обычно используют для определения степени поперечного сшивания). Известны резины, характеризующиеся масло-, бензо-, водо-, паро- и термостойкостью, стойкостью к действию хим. агрессивных сред, озона, света, ионизирующих излучений. При длит. хранении и эксплуатации резины подвергаются старению и утомлению, приводящим к ухудшению их мех. св-в, снижению прочности и разрушению. Срок службы резин в зависимости от условий эксплуатации от неск. дней до неск. десятков лет.

Классификация. По назначению различают след. осн. группы резин: общего назначения, теплостойкие, морозостойкие, маслобензостойкие, стойкие к действию хим. агрессивных сред, диэлектрич., электропроводящие, магнитные, огнестойкие, радиационностойкие, вакуумные, фрикционные, пищ. и мед. назначения, для условий тропич. климата и др. (табл. 2); получают также пористые, или губчатые (см. Пористая резина), цветные и прозрачные резины.

Применение. Резины широко используют в технике, с. х-ве, быту, медицине, стр-ве, спорте. Ассортимент резиновых изделий насчитывает более 60 тыс. наименований. Среди них: шины, транспортные ленты, приводные ремни, рукава, амортизаторы, уплотнители, сальники, манжеты, кольца и др., кабельные изделия, обувь, ковры, трубки, покрытия и облицовочные материалы, прорезиненные ткани, герметики и др. Более половины объема вырабатываемой резины используется в произ-ве шин.

4046-1.jpg

4046-2.jpg

Мировое произ-во резиновых изделий более 20 млн. т/год (1987).

Лит.: Справочник резинщика. Материалы резинового производства, М., 1971; Кузьминский А. С., Кавун С. М., Кирпичев В. П., Физико-химические основы получения, переработки и применения эластомеров, М., 1976; Энциклопедия полимеров, т. 3, М., 1977, с. 313-25; Кошелев Ф.Ф., Кор-нев А.Е., Буканов А.М., Общая технология резины, 4 изд., М., 1978; Догадкин Б. А., Донцов А.А., Шершнев В.А., Химия эластомеров, 2 изд., М., 1981; Федюкин Д.Л., Махлис Ф.А., Технические и технологические свойства резин, М., 1985; Применение резиновых технических изделий в народном хозяйстве. Справочное пособие, М., 1986; Зуев Ю. С., Дегтева Т. Г., Стойкость эластомеров в эксплуатационных условиях, М., 1986; Лепетов В. А., Юрцев Л. Н., Расчеты и конструирование резиновых изделий, 3 изд., Л., 1987. Ф.Е. Куперман.

Химический состав резиновой смеси шин

грамотной комбинации с учётом предназначения самой шины.

Основные составляющие резиновой смеси:

  1. Каучук. Хотя шинный коктейль необычайно сложен по своему составу, основу его всё же образуют различные каучуковые смеси. Натуральный каучук, состоящий из высушенного сока (латекса) бразильской гевеи, долгое время доминировал во всех смесях, различаясь при этом лишь по уровню качества. Также каучуконосный млечный сок содержится в некоторых видах сорных трав и одуванчиков. Производимый из нефти синтетический каучук был изобретён немецкими химиками в 30-е гг. и современная скоростная шина
    без него просто немыслима. В настоящее время синтезируется несколько десятков различных синтетических каучуков. Каждый из них имеет свои характерные особенности и строгое назначение в разных деталях шины.
    Даже после изобретения синтетического изопренового каучука (СКИ) — близкого по свойствам к натуральному, резиновая промышленность не может полностью отказаться от использования последнего. Единственный его недостаток перед СКИ — дороговизна. На территории СССР не было возможности получать натуральный каучук из растений, а покупать его
    за границей приходилось за валюту. Это спровоцировало развитие богатой химии синтеза каучуков и других полимеров.
  2. Технический углерод. Добрая треть резиновой смеси состоит из промышленной сажи (технический углерод), наполнителя, предлагаемого
    в различных вариантах и придающего шине её специфичный цвет.
    Сажа обеспечивает в процессе вулканизации хорошее молекулярное соединение, что придаёт покрышке особую прочность и износостойкость. Сажу получают путём деструкции природного газа без доступа воздуха.
    В СССР при доступности этого «дешёвого» сырья было возможно широкое применение технического углерода. Резиновые смеси с использованием ТУ вулканизуются серой.
  3. Кремниевая кислота. В Европе и США ограниченный доступ к источникам природного газа вынудил химиков найти замену ТУ. При том, что кремниевая кислота не обеспечивает такую же высокую прочность резинам, как ТУ,
    она улучшает сцепление шины с мокрой поверхностью дороги. Так же
    она лучше внедряется в структуру каучука и меньше вытирается из резины при эксплуатации шины. Это свойство менее пагубно для экологии.
    Чёрный налёт на дорогах — технический углерод, вытертый из шин.
    В рекламе и обиходе шины с использованием кремниевой кислоты называются «зелёными». Резины вулканизуются перекисями.
    Полностью отказаться от использования технического углерода
    в настоящее время не представляется возможным.
  4. Масла и смолы. К важным составным частям смеси, но в меньшем объёме, относятся масла и смолы, обозначаемые как мягчители и служащие
    в качестве вспомогательных материалов. От достигнутой жёсткости
    резиновой смеси во многом зависят ездовые свойства и износостойкость шины.
  5. Сера. Сера (и кремниевая кислота) — вулканизующий агент.
    Связывает молекулы полимера «мостиками» с образованием
    пространственной сетки. Пластичная сырая резиновая смесь
    превращается в эластичную и прочную резину.
  6. Вулканизационные активаторы, такие как оксид цинка и стеариновые кислоты, а также ускорители инициируют и регулируют процесс вулканизации в горячей форме (под давлением и при нагреве) и направляют реакцию взаимодействия вулканизующих агентов с каучуком в сторону получения пространственной сетки между молекулами полимера.
  7. Экологические наполнители. Новая и ещё не распространённая технология предполагает собой применять в смеси протектора крахмал из кукурузы
    (в перспективе картофеля и сои). За счёт значительно уменьшенного сопротивления качения шина на основе новой технологии выделяет
    в атмосферу почти вдвое меньше соединений углекислого газа
    по сравнению с обычными шинами.

главная > справочник > химическая энциклопедия:

Резина (от лат. resina – смола) (вулканизат), эластичный материал, образующийся в результате вулканизации натурального и синтетических каучуков. Представляет собой сетчатый эластомер – продукт поперечного сшивания молекул каучуков химическими связями.

Получение резины

Резину получают главным образом вулканизацией композиций (резиновых смесей), основу которых (обычно 20-60% по массе) составляют каучуки. Другие компоненты резиновых смесей – вулканизующие агенты, ускорители и активаторы вулканизации (см. Вулканизация), наполнители, противо-старители, пластификаторы (мягчители). В состав смесей могут также входить регенерат (пластичный продукт регенерации резины, способный к повторной вулканизации), замедлители подвулканизации, модификаторы, красители, порообразователи, антипирены, душистые вещества и другие ингредиенты, общее число которых может достигать 20 и более. Выбор каучука и состава резиновой смеси определяется назначением, условиями эксплуатации и техническими требованиями к изделию, технологией производства, экономическими и другими соображениями (см. Каучук натуральный, Каучуки синтетические).

Технология производства изделий из резины включает смешение каучука с ингредиентами в смесителях или на вальцах, изготовление полуфабрикатов (шприцеванных профилей, каландрованных листов, прорезиненных тканей, корда и т.п.), резку и раскрой полуфабрикатов, сборку заготовок изделия сложной конструкции или конфигурации с применением специального сборочного оборудования и вулканизацию изделий в аппаратах периодического (прессы, котлы, автоклавы, форматоры-вулканизаторы и др.) или непрерывного действия (тоннельные, барабанные и др. вулканизаторы). При этом используется высокая пластичность резиновых смесей, благодаря которой им придается форма будущего изделия, закрепляемая в результате вулканизации. Широко применяют формование в вулканизационном прессе и литье под давлением, при которых формование и вулканизацию изделий совмещают в одной операции. Перспективны использование порошкообразных каучуков и композиций и получение литьевых резин методами жидкого формования из композиций на основе жидких каучуков. При вулканизации смесей, содержащих 30-50% по массе S в расчете на каучук, получают эбониты.

Свойства резины

Резину можно рассматривать как сшитую коллоидную систему, в которой каучук составляет дисперсионную среду, а наполнители – дисперсную фазу. Важнейшее свойство резины – высокая эластичность, т.е. способность к большим обратимым деформациям в широком интервале температур (см. Высокоэластическое состояние).

Резина сочетает в себе свойства твердых тел (упругость, стабильность формы), жидкостей (аморфность, высокая деформируемость при малом объемном сжатии) и газов (повышение упругости вулканизационных сеток с ростом температуры, энтропийная природа упругости).

Резина – сравнительно мягкий, практически несжимаемый материал. Комплекс ее свойств определяется в первую очередь типом каучука (см. табл. 1); cвойства могут существенно изменяться при комбинировании каучуков различных типов или их модификации.

Модуль упругости резин различных типов при малых деформациях составляет 1-10 МПа, что на 4-5 порядков ниже, чем для стали; коэффициент Пауссона близок к 0,5. Упругие свойства резины нелинейны и носят резко выраженный релаксационный характер: зависят от режима нагружения, величины, времени, скорости (или частоты), повторности деформаций и температуры. Деформация обратимого растяжения резины может достигать 500-1000%.

Нижний предел температурного диапазона высокоэластичности резины обусловлен главным образом температурой стеклования каучуков, а для кристаллизующихся каучуков зависит также от температуры и скорости кристаллизации. Верхний температурный предел эксплуатации резины связан с термической стойкостью каучуков и поперечных химических связей, образующихся при вулканизации. Ненаполненные резины на основе некристаллизующихся каучуков имеют низкую прочность. Применение активных наполнителей (высокодисперсных саж, SiO 2 и др.) позволяет на порядок повысить прочностные характеристики резины и достичь уровня показателей резины из кристаллизующихся каучуков. Твердость резины определяется содержанием в ней наполнителей и пластификаторов, а также степенью вулканизации. Плотность резины рассчитывают как средневзвешенное по объему значение плотностей отдельных компонентов. Аналогичным образом могут быть приближенно вычислены (при объемном наполнении менее 30%) теплофизические характеристики резины: коэффициент термического расширения, удельная объемная теплоемкость, коэффициент теплопроводности. Циклическое деформирование резины сопровождается упругим гистерезисом, что обусловливает их хорошие амортизационные свойства. Резины характеризуются также высокими фрикционными свойствами, износостойкостью, сопротивлением раздиру и утомлению, тепло- и звукоизоляционными свойствами. Они диамагнетики и хорошие диэлектрики, хотя могут быть получены токопроводящие и магнитные резины.

Резины незначительно поглощают воду и ограниченно набухают в органических растворителях. Степень набухания определяется разницей параметров растворимости каучука и растворителя (тем меньше, чем выше эта разность) и степенью поперечного сшивания (величину равновесного набухания обычно используют для определения степени поперечного сшивания). Известны резины, характеризующиеся масло-, бензо-, водо-, паро- и термостойкостью, стойкостью к действию химически агрессивных сред, озона, света, ионизирующих излучений. При длительном хранении и эксплуатации резины подвергаются старению и утомлению, приводящим к ухудшению их механических свойств, снижению прочности и разрушению. Срок службы резины в зависимости от условий эксплуатации от нескольких дней до нескольких десятков лет.

Классификация резин

По назначению различают следующие основные группы резин: общего назначения, теплостойкие, морозостойкие, маслобензостойкие, стойкие к действию химически агрессивных сред, диэлектрические, электропроводящие, магнитные, огнестойкие, радиационностойкие, вакуумные, фрикционные, пищевого и медицинского назначения, для условий тропического климата и др. (табл. 2); получают также пористые, или губчатые (см. Пористая резина), цветные и прозрачные резины.

Применение резины

Резины широко используют в технике, сельском хозяйстве, быту, медицине, строительстве, спорте. Ассортимент резиновых изделий насчитывает более 60 тыс. наименований. Среди них: шины, транспортные ленты, приводные ремни, рукава, амортизаторы, уплотнители, сальники, манжеты, кольца и др., кабельные изделия, обувь, ковры, трубки, покрытия и облицовочные материалы, прорезиненные ткани, герметики и др. Более половины объема вырабатываемой резины используется в производстве шин.

Мировое производство резиновых изделий более 20 млн. т/год (1987).

Лит.: Справочник резинщика. Материалы резинового производства, М., 1971; Кузьминский А.С., Кавун С.М., Кирпичев В.П., Физико-химические основы получения, переработки и применения эластомеров, М., 1976; Энциклопедия полимеров, т. 3, М., 1977, с. 313-25; Кошелев Ф.Ф., Корнев А.Е., Буканов А.М., Общая технология резины, 4 изд., М., 1978; Догадкин Б.А., Донцов А.А., Шершнев В.А., Химия эластомеров, 2 изд., М., 1981; Федюкин Д.Л., Махлис Ф.А., Технические и технологические свойства резин, М., 1985; Применение резиновых технических изделий в народном хозяйстве. Справочное пособие, М., 1986; Зуев Ю.С., Дегтева Т.Г., Стойкость эластомеров в эксплуатационных условиях, М., 1986; Лепетов В.А., Юрцев Л.Н., Расчеты и конструирование резиновых изделий, 3 изд., Л., 1987.

Читайте также:

Что собой представляет резина по химическому составу

Резина – широко известный материал, который применяется практически во всех сферах человеческой жизни. Медицина, сельское хозяйство, промышленность не могут обойтись без этого полимера. Во многих производственных процессах также используется резина. Из чего делают этот материал и в чем его особенности, описано в статье.

Что такое резина

Резина являет собой полимер с высокой эластичностью. Его структура представлена хаотично расположенными цепочками углерода, скрепленными атомами серы.

В нормальном состоянии углеродные цепочки имеют скрученный вид. Если резину растянуть, цепочки углерода раскрутятся. Способность растягиваться и быстро возвращаться в прежнюю форму сделала незаменимым во многих сферах такой материал, как резина.

Из чего делают ее? Обычно резину получают путем смешивания каучука с вулканизирующим веществом. После нагрева до нужной температуры смесь густеет.

Что такое резина: из чего делают, сферы применения

Отличие каучука от резины

Каучук и резина – высокомолекулярные полимеры, полученные натуральным или синтетическим способом. Эти материалы отличаются физико-химическими свойствами и способами производства. Натуральный каучук являет собой вещество, изготовленное из сока тропических дерев — латекса. Он вытекает из коры при ее повреждении. Синтетический каучук получают путем полимеризации стирола, неопрена, бутадиена, изобутилена, хлоропрена, нитрила акриловой кислоты. При вулканизации искусственного каучука образуется резина.

Из чего делают разные типы каучуков? Для отдельных видов синтетических материалов применяют органические вещества, позволяющие получить материал, идентичный натуральному каучуку.

Что такое резина: из чего делают, сферы применения

Свойства резины

Резина является универсальным материалом, который обладает следующими свойствами:

  1. Высокая эластичность – способность к большим обратным деформациям в широком диапазоне температур.
  2. Упругость и стабильность форм при малых деформациях.
  3. Аморфность – легко деформируется при незначительном нажатии.
  4. Относительная мягкость.
  5. Плохо поглощает воду.
  6. Прочность и износостойкость.
  7. В зависимости от типа каучука резина может характеризоваться водо-, масло-, бензо-, термостойкостью и стойкостью к действию химических веществ, ионизирующих и световых излучений.

Резина со временем утрачивает свои свойства и теряет форму, что проявляется разрушением и снижением прочности. Срок службы резиновых изделий зависит от условий использования и может составлять от нескольких дней до нескольких лет. Даже при длительном хранении резина стареет и становится непригодной к эксплуатации.

Что такое резина: из чего делают, сферы применения

Производство резины

Резина изготовляется методом вулканизации каучука с добавлением смесей. Обычно 20-60% перерабатываемой массы составляет каучук. Другие компоненты резиновой смеси – наполнители, вулканизующие вещества, ускорители, пластификаторы, противостарители. В состав массы могут также добавляться красители, душистые вещества, модификаторы, антипирены и другие компоненты. Набор компонентов определяется требуемыми свойствами, условиями эксплуатации, технологией использования готового резинового изделия и экономическими расчетами. Таким способом создается высококачественная резина.

Из чего делают резиновые полуфабрикаты? Для этой цели на производствах применяется технология смешивания каучука с другими компонентами в специальных смесителях или вальцах, предназначенных для изготовления полуфабрикатов, с последующей порезкой и раскройкой. В производственном цикле используются прессы, автоклавы, барабанные и тоннельные вулканизаторы. Резиновой смеси придается высокая пластичность, благодаря которой будущее изделие приобретает необходимую форму.

Что такое резина: из чего делают, сферы применения

Изделия из резины

На сегодняшний день резина используется в спорте, медицине, строительстве, сельском хозяйстве, на производстве. Общее количество изделий, изготовляемых из резины, превышает более 60 тыс. разновидностей. Наиболее популярные из них — уплотнители, амортизаторы, трубки, сальники, герметики, прорезиненые покрытия, облицовочные материалы.

Изделия из резины массово используются в производственных процессах. Этот материал также незаменим в производстве перчаток, обуви, ремней, непромокаемой ткани, транспортных лент.

Большая часть производимой резины используется для изготовления шин.

Что такое резина: из чего делают, сферы применения

Резина в производстве шин

Резина является основным материалом в производстве автомобильных шин. Этот процесс начинается с приготовления резиновой смеси из натурального и синтетического каучука. Затем к резиновой массе добавляется силика, сажа и другие химические компоненты. После тщательного перемешивания смесь отправляется по конвейерной ленте в печь. На выходе получаются резиновые ленты определенной длины.

На следующем этапе происходит обрезинивание корда. Текстильный и металлический корд заливается горячей резиновой массой. В такой способ изготавливается внутренний, текстильный и брекерный слой шины.

Из чего делают резину для шин? Все производители автомобильных шин используют разные рецептуры и технологии изготовления резины. Для придания готовому изделию прочности и надежности могут добавляться разные пластификаторы и усиливающие наполнители.

Для производства шин используют натуральный каучук. Его добавление в резиновую смесь уменьшает нагревание покрышки. Большую часть резиновой смеси занимает синтетический каучук. Этот компонент придает шинам упругость и способность выдерживать большие нагрузки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *